Seabrook Substation Reliability Improvement Project

1. Project Summary Description

- Seabrook Substation is critical to ISO-New England as a Pool Transmission Facility, to grid availability for Seabrook Generator and to fulfill NRC loss of offsite power requirements to a nuclear generating station.
- FPL-NED has a rigorous maintenance program. However, the Seabrook Substation was built in 1982 with first generation GIS technology and equipment failures experienced during the past 2 years have affected availability of the Seabrook Generator, causing in excess of 26 days of unplanned outages since Feb. 2007.
- Existing design of the Seabrook Substation which has the Reserve Auxiliary Transformers (RAT) connected directly to Bus No. 2 is not optimal and poses reliability concerns as well as operational limitations.
- FPL-NED’s Project cost effectively improves: i) 345kV line reliability, ii) generator availability and iii) ability to perform maintenance or future upgrades as required without the need for a generator outage.
- Generator refueling outages which are critical to switchyard construction work (e.g. cutover and commissioning of new facilities) are at 18 month intervals and FPL-NED proposes to complete the Project over the next two refueling outages (October 2009; April 2011).
- The Project, which will be conducted in two stages, is the most cost-effective to significantly improve reliability
  - Two dedicated busses improve the reliability and maintainability of the three 345 kV transmission lines interconnected through the Seabrook Substation.
  - Improves the availability of the Seabrook Generator to New England and increases offsite power reliability per NRC requirements.
  - Modified design provides more separation between transmission lines and the Seabrook Generator. This reduces impact of events that involve a line fault and breaker failure.
  - Improved design will allow more flexibility for clearances to perform future maintenance and upgrades outside of Generator outages and without placing lines in a single-contingency condition.
  - If all permits and approvals are received by March, 2009, then Stage 1 of this project will be completed during the October 2009 refueling outage requiring only a Line 369 outage, and during the April 2011 refueling outage, Stage 2 will be completed.
  - Modified RAT and GSU interconnection is standard design for typical FPL Nuclear substations.
2. Problem Statement

Seabrook 345-kV Substation (S/S), located in Seabrook, New Hampshire, is a major bulk power transmission system facility and a critical node on the ISO-New England (ISO-NE) transmission grid. The substation was originally built in 1982 with a gas insulated substation (GIS) design (first generation technology) and consists of eight circuit breakers. The substation is owned, maintained and operated by Florida Power and Light Company - New England Division (FPL-NED). As shown in Figure 1 below, the circuit breakers at Seabrook S/S are arranged in a breaker and one half scheme with connections for five key transmission elements: Line 394 (Ward Hill – Tewksbury); Line 363 (Scobie Pond) and Line 369 (Timber Swamp – Newington); the reserve auxiliary transformers (RATs) and generator step up transformers (GSUs) used to interconnect the 1318 MW nuclear power station and unit auxiliary transformer (UAT).

![Figure 1 - Existing Seabrook 345-kV Substation](image)

FPL-NED has implemented and continues to exercise a rigorous maintenance program on the Seabrook Substation. However, the substation is 26 years old and equipment failures experienced during the past two years have affected availability of the transmission lines and nuclear station causing 26 days of unplanned outages since February 2007. Component failures on the rupture discs, switch rods and connections involving the RATs and GSUs have caused recent station outages.
The existing substation design of the Seabrook S/S which has the RATs connected directly to Bus No. 2 is not optimal and poses reliability concerns as well as operational limitations. In the event a fault occurs simultaneous with a breaker failure (eg. 632, and/or 692) then one of the 345-kV lines and the RATs will be lost. Due to the direct connection to Bus No. 2, the failure of the RAT will also result in an outage of Bus No. 2 which severely lowers the reliability performance of the station. This design configuration has limited operating flexibility that does not allow for efficient and effective maintenance of substation equipment. Table 1 below demonstrates the impact on substation reliability performance of the RAT connection onto Bus No. 2. Design modifications are needed to move the RAT connection into a dedicated terminal position within the substation which will substantially improve the reliability of the Seabrook 345-kV Substation.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Fault</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Facilities In-service</td>
<td>RAT Failure with Stuck 692 Breaker</td>
<td>Trips 369 (to Timber Swamp)</td>
<td>Loss of 345-kV transmission line</td>
</tr>
<tr>
<td></td>
<td>RAT Failure with Stuck 632 Breaker</td>
<td>Trips 363 (to Scobie Pond)</td>
<td>Opens NNE-Scobie + 394 Interface Facility</td>
</tr>
<tr>
<td></td>
<td>Fault on Line 369 with Stuck 692 Breaker</td>
<td>Trips Bus No. 2 and RAT</td>
<td>May require backdown of Seabrook generator</td>
</tr>
<tr>
<td></td>
<td>Fault on Line 363 with Stuck 632 Breaker</td>
<td>Trips Bus No. 2 and RAT</td>
<td>May require backdown of Seabrook generator</td>
</tr>
<tr>
<td>Breaker 941 Open</td>
<td>RAT Failure</td>
<td>Open Breaker 22, 632, and 692 and Isolates Line 394</td>
<td>Opens NNE-Scobie +394 and North-South Interface Facility</td>
</tr>
<tr>
<td>Breaker 169 Open</td>
<td>RAT Failure</td>
<td>Open Breaker 22, 632, and 692 and Isolates Line 369</td>
<td>Loss of 345-kV transmission line</td>
</tr>
<tr>
<td>Breaker 163 Open</td>
<td>RAT Failure</td>
<td>Open Breaker 22, 632, and 692 and Isolates Line 363</td>
<td>Opens NNE-Scobie + 394 Interface Facility</td>
</tr>
</tbody>
</table>

Table 1 - List of Contingencies Involving RAT and Bus No. 2

NRC design requirements for Seabrook Nuclear Generating Station require that the Seabrook 345-kV Substation provide for independent and redundant paths to ensure an available off-site power supply for “N-2” contingency conditions. These are codified in the NRC-approved Technical Specifications (Tech. Specs.) and Unit Final Safety Analysis Report (UFSAR). In addition, loss of either off-site power connection (UAT or RAT) places the generating station in an immediate Limited Condition of Operation (LCO). The LCO can require station back down which may have undesired effects on grid reliability and wholesale market prices.

A second reliability concern is the generator connection which shares a breaker bay with Line 363. The Seabrook generator is the largest single unit in New England, New York and Canadian Maritimes control areas. A fault on Line 363 with a failed breaker or relay misoperation results in the Seabrook generator being tripped. In addition, maintenance on Breaker 163 with a fault on either Line 394 or 369 with a stuck breaker also trips the 1318 MW Seabrook generator.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Fault</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Facilities In-service</td>
<td>363 Fault with Stuck 163 Breaker</td>
<td>Trips 1318 MW Generator</td>
<td>Largest source loss in Northeast region</td>
</tr>
<tr>
<td>Breaker 163 Open</td>
<td>Fault on Line 394 and 369 Breaker</td>
<td>Trips 1318 MW Generator</td>
<td>Largest source loss in Northeast region</td>
</tr>
</tbody>
</table>
Table 2 – List of Contingencies Tripping the Seabrook Generator

<table>
<thead>
<tr>
<th>Contingency</th>
<th>Event Details</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stuck 941 Breaker</td>
<td>Fault on Line 369 and Stuck 169 Breaker</td>
<td>Northeast region</td>
</tr>
<tr>
<td></td>
<td>Trips 1318 MW Generator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Largest source loss in Northeast region</td>
<td></td>
</tr>
<tr>
<td>Breaker 11 Open</td>
<td>Fault on Line 363 and Stuck 632 Breaker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trips 1318 MW Generator and RAT</td>
<td>Remove both offsite power supplies and largest source loss in Northeast region</td>
</tr>
</tbody>
</table>

FPL-NED recommends modifications to improve substation reliability for the transmission lines, 1318 MW generator and offsite power supply for the nuclear station. In addition, condition assessments of the entire switchyard are underway, switch rods are being replaced and proposals are being prepared to add GIS equipment monitoring and failure detection systems.
Stage 1
Seabrook Switchyard Reliability Project
(October-December 2009)

Option 2C:
Before Outage (before 10/09):
- Install (but don't connect) 2 bkr double breaker double bus bay between existing breakers and RAT Transformers (maintain roadway width)
- Install Br2 new Bkr. Failure Panels
- Install 2 new Bus Diff Panels
- Install cable tray from yard to relay room and pull cables.
- Utilized spare conduits for second path (check availability)
- Terminate cables between new breakers and new panels
- Check Battery

During Outage (10/09):
- Connect new Breakers to North, South, RAT and GSU busses.
- Existing RAT bus is divided into two bus diff zones.
- Modify south bus diff zone to wrap existing GSU position

Existing connection - to be modified during outage

Not In-Service

Stage 1 - $51.3 Million
Total Project - $63 Million
Option 2C:

Before Outage (before 10/09):
- Install (but don’t connect) 2 breaker double breaker double bus bay between existing breakers and RAT Transformers (maintain roadway width)
- Install Br2 new breaker. Failure Panels
- Install 2 new Bus Diff Panels
- Install cable tray from yard to relay room and pull cables.
- Utilized spare conduits for second path (check availability)
- Terminate cables between new breakers and new panels
- Check Battery

During Outage (10/09):
- Connect new breakers to North, South, RAT and GSU busses.
- Existing RAT bus is divided into two bus diff zones.
- Modify south bus diff zone to wrap existing GSU position

Existing connection - to be modified during outage

Stage 2 - 2010 - $2.8 Million: 2011 - $8.9 Million
Total Project - $63 Million