Q64
Photovoltaic Solar Generation
Project Interconnection

Facilities Study
APS Contract No. 52215

By
Arizona Public Service Company
Distribution Planning

July 7, 2011
Q64 Facilities Study

TABLE OF CONTENTS

Executive Summary .. 1
1 Introduction .. 4
2 Results ... 5
 2.1 Construction Requirements at the Hyder Substation ... 6
 2.2 Construction Requirements for the 12kV Generator Distribution line ... 6
 2.3 Construction Requirements at the Point of Interconnection (at Generation Facility) 7
 2.4 Detailed Description of the Major System Protection and Communication Facilities Required 8
3 Detailed Description of Major System Protection Facilities required and Associated Costs 8
4 Additional Facility Study Results ... 11

LIST OF APPENDICES

Appendix A – APS Distribution Generator Interconnection Standard (diagram)
Appendix B – APS Interconnection Requirements for Distributed Generation (IRDG)
Executive Summary

This section summarizes the Facilities Study (FaS) results provided in response to a Small Generator Interconnection Request under the APS Open Access Transmission Tariff (OATT) for a proposed solar generation interconnection totaling 10.0 MW in the Arizona Public Service (APS) distribution system.

Interconnection Customer (IC) has proposed a 10.0 MW solar photovoltaic project that would be interconnected to the APS distribution system (defined to FERC as less than 69kV) and could be engaging in wholesale energy sales beyond the APS system. Therefore this Project is a FERC jurisdictional small generator interconnection. The proposed generation project, identified in the APS Small Generator Interconnection Queue as Q64, consists of solar photovoltaic arrays with inverters converting DC to AC electrical power. The IC submitted an interconnection request to APS, which was accepted on 4/24/2009. APS subsequently performed a Feasibility Study under APS Contract No. 52158. Interconnection Customer then requested and after internal review, APS approved of skipping the System Impact Study and going directly to the FaS under APS Contract No. 52215.

The Interconnection Customer’s requested Commercial Operation Date for Q64 is June 01, 2012 and will be located west of 579th Avenue and south of Hyder Rd (Powerline Rd) located near Hyder, Arizona. The solar photovoltaic arrays’ electrical output will be interconnected to APS’s distribution system at the Hyder substation. The estimated timeframes determined in this Facility Study indicate that the In-Service Date for this interconnection could possibly meet the Interconnection Customer’s requested Commercial Operation Date of June 1, 2012 with the caveat that permitting, Rights-of-Way (ROW) and other considerations are only estimates. Negotiations of the Small Generator Interconnection Agreement would lead to more specific dates, especially the In-Service Date as this is the most critical date for APS Construction. The Interconnection Customer may offer a different In-Service Date that makes the estimated In-Service Date fall within a ten year period from the Q64 valid Queue Position of 4/24/2009 to maintain the project’s Queue Position. Please note that the Small Generator Interconnection Agreement must have an estimated In-Service Date included in the executed document.

The interconnection construction costs and timelines were estimated for Q64 based on the approximate location as provided by the Interconnection Customer. A 12kV option was evaluated for the interconnection voltage.

These good faith non-binding costs are applicable only to the APS system. System Protection and Flicker studies were performed based on 10.0 MVA of solar photovoltaic generation.

PLEASE NOTE: In the APS provided Feasibility Study, and included in discussions and meetings with the Interconnection Customer, APS mis-identified the size of the Hyder Substation 69/12 kV transformer as 16 MVA. This information turned out to be incorrect. Subsequent to the Feasibility Study, and as part of this FaS, this transformer was more specifically identified as 9.375 MVA. This was the result of field and data investigation of what appeared to be faulty information when more closely scrutinized. Due to this discrepancy, with mutual agreement between APS and the IC, the Generating Facility size studied was reduced from the requested 10 MW to 9.375 MW to avoid the required costly mitigations that would be necessary. This was deemed to not be a Material Modification to the Interconnection Request.

The Q64 interconnection cost and timeline estimates are listed in the table below. If the Interconnection Customer self-certifies to FERC that the project is a Qualifying Facility (QF), there may be certain tax effects. APS does not assist in the QF certification, nor does APS offer tax advice. Should the facility be successfully certified as a QF, APS will require a copy of the certification prior to executing an Interconnection Agreement.
Table ES1: Summary of Q64 Project Interconnection Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Q64 Cost Estimate @ 12.47 kV (Option#1)</th>
<th>Q64 Cost Estimate @ 12.47kV (Option #2)</th>
<th>Q64 Time Line @ 12.47 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyder Substation: Substation Upgrades, 1)12.47 kV Breaker, 12kV P.T.'s(3), 12kV C.T.(1), with associated SEL-351 2) 69kV P.T.'s, 69kV C.T. with associated SEL-311C relay. 3) Bus work required for substation breaker Distribution Upgrades</td>
<td>$300,000</td>
<td>$300,000</td>
<td>6-9 months</td>
</tr>
<tr>
<td>* Hyder Substation: Substation Upgrades Control House, Network Upgrade</td>
<td>$90,000</td>
<td>$90,000</td>
<td>6-months</td>
</tr>
<tr>
<td>Overhead Line Construction (with Fiber Optic Cable installation)</td>
<td>$160,000</td>
<td>$425,000</td>
<td>6-9 months</td>
</tr>
<tr>
<td>Distribution Upgrade</td>
<td>$160,000</td>
<td>$160,000</td>
<td>6-months</td>
</tr>
<tr>
<td>Underground Cable plus fiber optic cable (Installed and terminated)</td>
<td>$60,000</td>
<td>$120,000</td>
<td>6-months</td>
</tr>
<tr>
<td>Distribution Upgrade</td>
<td>$160,000</td>
<td>$160,000</td>
<td>6-months</td>
</tr>
<tr>
<td>Estimated Total Cost (Assuming certified as QF, therefore no inclusion of estimated tax effect mark-up in this Total.)</td>
<td>$770,000</td>
<td>$1,085,000</td>
<td>6-9 months</td>
</tr>
</tbody>
</table>

* Denotes identification as Network Upgrades in above table, which total an estimated $90,000.

Disclaimer
Nothing in this report constitutes an offer of transmission service or confers upon the Interconnection Customer, any right to receive transmission service. APS and other interconnected utilities may not have the Available Transmission Capacity to support the interconnection described in this report.
Figure 1 below shows a sketch of the project and an overview of the nearby distribution grid with the project depicted interconnecting to the 12kV bus at Hyder Substation. Appendix (A) shows the standard Distribution Generation Interconnection, Point of Ownership Change, and Point of Interconnection.

Option #1

Customer to provide trenching and conduit for this segment, APS to install and terminate cable.

Figure 1. Q64 Interconnection
1 Introduction

What was studied
This Facilities Study (FaS) examined the estimated construction cost of interconnecting the proposed generation to the surrounding APS distribution system and the system protection implications / requirements resulting from this project. Additionally, this study evaluated the impact on the APS distribution system for a loss generation (flicker).

Facility Study Results of Allowable Generating Capacity
Due to the low level of available fault current in the Hyder Substation area, the amount of allowable generation is limited by APS’s system protection requirements regardless if the interconnection is at 69kV or 12kV. Consequently, a 12kV interconnection was considered to be the economic alternative for this study. Following a more detailed analysis of the 69kV and 12kV system as it pertains to Hyder Substation, and as allowed-for in the Facilities Study, it was determined that system protection requirements (due to the low level of available fault current at Hyder Substation) limits the amount of generation at Hyder Substation to 10 MW. This limitation results from the 69kV transformer fuse size required to coordinate with the surrounding electric system as well as protect and clear “low-side” transformer faults within prescribed time constraints.

Since the existing transformer in Hyder Substation is rated at 9.375 MVA (now confirmed), the generation will be limited to this 9.375 MVA transformer capacity rating (9.375 MW for the interconnection agreement in light of the Power Factor requirement). In order to interconnect the full requested 10 MW of generation, the existing transformer in Hyder Substation would have to be upgraded to a 69/12kV, 20 MVA transformer. While the installed cost of a 20 MVA transformer is approximately $600,000, the existing Hyder substation site is not large enough, nor could it be expanded enough to accept the installation of this larger transformer. Consequently this larger transformer was considered an uneconomic solution.

1 Results

Q64 has requested the interconnection of their Generating Facilities (GF) to be located west of 579th Avenue and approximately 0.25 miles south of Hyder Rd (Powerline Rd) near the old town of Hyder in Yuma County, Arizona. An “interconnection” line will be constructed from APS’s Hyder Substation to the utility metering section (Point of Interconnection, “POI”) to be located at the Interconnection Customer’s photovoltaic GF.

There are two kinds types of upgrades associated with this project: Distribution Upgrades and Network Upgrades. There is no repayment for Distribution Upgrades. Network Upgrades only apply to some upgrades to the system at or above 69kV. Network Upgrades do not include Distribution Upgrades. Theses upgrades are defined by FERC as:

Distribution Upgrades—The additions, modifications, and upgrades to the Transmission Provider’s Distribution System required at or beyond the Point of Interconnection to facilitate interconnection of the Small Generating Facility and render the transmission service necessary to effect the Interconnection Customer’s wholesale sale of electricity in interstate commerce. Distribution Upgrades do not include Interconnection Facilities.
Network Upgrades—The additions, modifications, and upgrades to the Transmission Provider’s Transmission System required at or beyond the point at which the Small Generating Facility Interconnects with the Transmission Provider’s Transmission System to accommodate the interconnection with the Small Generating Facility to the Transmission Provider’s Transmission System. Network Upgrades do not include Distribution Upgrades.

Network Upgrades are typically repaid by APS via transmission service credits over a twenty year period. Any amount remaining at the end of the twenty years, if any, are repaid to the Interconnection Customer, including such interest as defined by FERC.

The GF shall be required to meet the APS OATT power factor of 0.95 leading to 0.95 lagging, as measured at Hyder Substation. This Power Factor may be dispatched within this designated range by the APS Energy Control Center personnel as appropriate due to system conditions and without compensation.

1.1 Construction Requirements at the Hyder Substation

A new 12kV feeder breaker (with associated bus work) with SEL-351 relays for a “transfer-trip” scheme, 3-69kV P.T.’s, 1-69kV C.T. with associated SEL-311C relay for overvoltage protection, and an overhead exit will be required at Hyder Substation. This work is considered a “Distribution Upgrade”.

A new RTU required for communications and control of the 12kV breaker (transfer-trip). Additionally, a new control house is required for protection of the RTU and relays from the elements. The control house will include an antenna which will utilize the customer-installed fiber optic circuit to communicate data and control with the APS “Oatman” Tower (M.A.S.). The data and control will ultimately be delivered to the APS Energy Management System. This will satisfy the “FERC” for a back-up communications path. The RTU, the antenna, and the control house are considered “Network Upgrades.”

1.2 Construction Requirements for the 12kV Generator Distribution line

Option #1
The line extension will require approximately 0.25 miles of 3-795ACSS+N overhead pole-line from the 12kV bus at Hyder Substation to a transition pole to be located at the northeast corner of the customer’s property. From the transition pole, approximately 600 ft of 6-750A, 15kV cable will be installed in 2-5” conduits (customer provided and installed) to the utility metering section (Point of Interconnection, “POI”) to be located at the Interconnection Customer’s photovoltaic generation site. This work is considered a “Distribution Upgrade”.

Option #2
The line extension will require approximately 250 ft. of 6-750A, 15kV cable (installed in 2-5” conduits plus 1-4” conduit for fiber optic cable) from the 12kV bus in Hyder Substation to a transition pole located on the north side of Hyder Rd (Powerline Rd) across from Hyder Substation. From this transition pole, approximately 3000 ft of 3-795A+N will be extended along the north side of Hyder Rd in a “southeastern” direction to the Avenue 76 “East” alignment. This section of line will be underbuild on an existing APS 69kV line with existing 12kV underbuild. To accommodate this new “generator circuit”, the existing line section will have to be rebuilt. From a pole location on the north side of Hyder Rd and in close proximity to Avenue 76 “East”, the overhead circuit will transition to underground and will extend approximately 900 ft along Avenue 76-East to the utility metering section (Point of Interconnection/POI) located at the Interconnection Customer’s photovoltaic generation site. This underground extension will be 6-750A, 15kV cable installed 2-5” conduits plus 1-4” conduit for fiber optic cable (customer provided and installed).
NOTE: For this study, the two underground sections (Hyder Sub to transition on n-s-o Hyder Rd and transition on Hyder Rd to POI) were estimated due to potential conflicts anchoring (down-guys) in the railroad right-of-way.

Line route is located in Yuma County for purposes hereof. Permit(s) will be required before construction can begin. In order to meet the Interconnection Customer’s estimated In-Service date of June 1, 2012, all permits must be obtained by September 2011. In the event that APS is unable to obtain the appropriate permits and/or easements by September 2011, the estimated In-Service Date may have to be delayed. If APS is unable to obtain permits and/or easements for the expected line route and another line route is necessary, the good faith non-binding estimated costs and timeframes herein shall be revised.

APS expects that the line extension will be located in existing road right-of-way or private easements. As noted above, should APS be unable to obtain the necessary right-of-way or private easements for the line and structures, the good faith non-binding estimated costs and timeframes herein shall be revised to reflect the new design, line route and other factors impacting the facilities required to provide interconnection service to the Interconnection Customer.

Subject to Yuma County permitting / siting processes, it is expected that APS will extend its Distribution System by installing a line extension from Hyder Substation to the GF’s Point of Interconnection along the east side of the property. The final route for the design and installation of APS’s 12.47kV line extension will be determined based on final engineering and the Yuma County Permits.

Direct Assignment Charge – The Interconnection Customer shall be responsible for a monthly Direct Assignment Charge ("DAC") that covers the costs of Operations and Maintenance of the line extensions and its associated equipment. This DAC is derived utilizing an APS standard methodology and is estimated during the study phase of the Project. After construction of the required line extension and supporting facilities, the DAC will be identified and charged monthly to the Customer based on the actual costs of construction. The actual-cost-based DAC will be a fixed monthly charge for the life of the FERC Interconnection Agreement beginning on the In-Service Date. The estimated DAC if certified as QF is $2,388 per month and is subject to revision and final update after the actual construction is complete and final invoicing for construction has taken place would need to be calculated by APS. Replacement of failed equipment, at actual cost, is at Customer’s expense and invoiced by APS.

NOTE: This estimate for DAC is for line path Option #1. Option #2 is not estimated and will likely be slightly higher.

1.3 Construction Requirements at the Point of Interconnection (at Generation Facility)

A 12kV disconnect switch at the transition pole (at Generation facility). This switch is required for isolation of the GF’s meter and for the operation and maintenance of the dedicated feeder. This is considered a “Distribution Upgrade”.

The customer owned “inverter transformers” will 12.47kV transformers with taps. These transformers will be operated on the 0.95 tap

An Interconnection Customer-owned visibly-open Disconnect Device equipped with grounding provisions acceptable to APS and APS-owned bidirectional utility metering equipment. This work is considered an “Interconnection Customer Facility” cost.

APS will require bi-directional metering (primary and back-up based on FERC requirement for separate communications paths) to be installed at the switchgear at the interconnection Customer’s GF at the Interconnection Customer’s expense. These meters define the POI between Interconnection Customer and APS. In addition, APS will require metering and RTU’s
(appropriately located to which meters will be connected) to be installed at the output of the generator at Interconnection Customer’s expense. The meters and RTU’s will be owned and operated by APS. The GF customer will provide communications for the billing meter and with the RTU’s. The primary communications path to APS’s Energy Management System (EMS) will be accomplished extending a fiber optic cable from the “generating facility” to Hyder Substation which will provide metering information and control via APS’s County Line Substation. Details regarding access to the RTU and meters will need to be addressed in the Operating Agreement between APS and the Interconnection Customer. The RTU will carry the metering data back to Hyder Substation using some of the fibers to be installed. Interconnection Customer is solely responsible for providing a suitable AC or DC power supply for the RTU that meets AP’s requirements. The RTU’s and bi-directional meters are considered “Distribution Upgrades”.

1.4 Detailed Description of the Major System Protection and Communication Facilities Required

The interconnection will also require a fiber optic line from Q64’s POI to APS’s substation breaker at Hyder Substation for a “transfer-trip relay scheme” that will be required between Q64’s main breaker at the GF and APS’s substation breaker to meet IEEE 1547. This work is considered a “Network Upgrade”.

Install fiber optic cable and communication equipment for communication with the APS Energy Control Center Energy Management System (“ECC”, “EMS) and protection of the new Interconnection Facilities. This is required for the “transfer-trip relay scheme”. The communications is a “Network Upgrade”.

Communication to the RTU’s at Hyder Substation for EMS for remote metering, monitoring and operation. This is considered a “Network Upgrade”.

A duplicate RTU and bi-directional meter scheme will be required for back-up purposes. Communication to the RTU is required by the APS Energy Management System (EMS) for remote metering, monitoring and operations (at the Generating Facility). This is considered a “Distribution Upgrade”.

2 Detailed Description of Major System Protection Facilities required and Associated Costs

System Protection Facilities are to be installed by APS at the Interconnection Customer’s expense. These requirements will be further refined in future FERC study phases for Q64.

- A12 kV breaker and controls at Q64.
- Schweitzer SEL351 with 50/51/51N feature protective relay with the Mirrored Bit option to accomplish the transfer tripping of the GF via fiber optic cable. This relay has the advantage of being able to communicate relay to relay and make the 50/51/51N elements operate in directional mode.
- An additional relay (SEL-311C) on the 69kV side to detect ground over-voltages on the 69kV system in case the 69kV system becomes isolated and fed from the generators.
- Devices equipped with grounding provisions acceptable to APS.
This study does not specifically address any requirements for the Interconnection Customer Generating Facilities. However, the Interconnection Customer shall comply with all APS requirements for a generator operating in parallel with APS's electrical system. For this interconnection at the 12kV level, interconnection requirements are specified in the APS document titled: Interconnection Requirements for Distributed Generation (APS “IRDG” manual). The Interconnection Customer shall be required to meet the requirements in effect at the time of execution of the Small Generator Interconnection Agreement (SGIA). The IRDG version in effect at the time of publishing of this Facility Study is attached to this report as Attachment (B). APS publishes the current IRDG on the website located at: http://www.oatioasis.com/azps/index.html in the Generation Interconnection folder.

- The Interconnection Customer small Generating Facility shall comply with the APS safety, metering, protection, and contractual requirements specified in the relevant APS documents pertaining to the interconnection and operation of a small Generating Facility in parallel with the APS Distribution System. All relevant sections of the APS Distribution Interconnection Agreement, as referenced in the IRDG manual, will be incorporated and attached to the SGIA, of which the backbone is located in Attachment P in the APS Tariff located at: http://www.oatioasis.com/azps/index.html
Minimum control and protective devices installed at the facility’s main circuit breaker as follows:

A Schweitzer SEL351 relay that incorporated the following functions:
(a) Over / Under Frequency
(b) Over / Under Voltage
(c) 50/51/51N functions.
(d) Alarm contacts to trip off the generators in the event of relay failure.
(e) Transfer trip
(f) Sync-check

All of the facilities described above are included in the estimates shown in Table 1 below. Also, listed below are the assumptions used for the 12kV line estimate.

- Generation feeder will be built to 12kV specifications.
- Construction estimate based on one 4 person crew.
- If new ROW or easements must be obtained, the costs are not included.
- Difficulty obtaining ROW or appropriate permits may extend design time and construction.
- Access and Lay-Down Yards are not included in the Estimate.
- Private acquisition could be 18 months if any condemnation is required.
- All Estimates are in 2011 dollars.

<table>
<thead>
<tr>
<th>Table 1: Q64 Project Interconnection Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q64 Cost Estimate @ 12.47 kV (Option #1)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>**Hyder Substation: Substation Upgrades, 1)12.47 kV Breaker, 12kV P.T.’s (3), 12kV C.T. (1), with associated SEL-351 2) 69kV P.T.’s, 69kV C.T. with associated SEL-311C relay. 3) Bus work required for substation breaker Distribution Upgrades</td>
</tr>
<tr>
<td>Hyder Substation: Substation Upgrades Control House, Network Upgrade</td>
</tr>
<tr>
<td>Overhead Line Construction (with Fiber Optic Cable installation) Distribution Upgrade</td>
</tr>
<tr>
<td>Underground Cable plus fiber optic cable (Installed and terminated) Distribution Upgrade</td>
</tr>
<tr>
<td>RTU’s and Communications Equipment at Generating Facility (2-locations on-site) Distribution Upgrades</td>
</tr>
<tr>
<td>Estimated Total Cost (Assuming certified as QF, therefore no inclusion of estimated tax effect mark-up in this Total.)</td>
</tr>
</tbody>
</table>

* Denotes identification as Network Upgrades in above table, which total an estimated $90,000.
3 Additional Facility Study Results

- APS does not anticipate any substation equipment, 12.47 kV feeder lines, or line devices to experience overload conditions due to 9.375 MVA of solar photovoltaic generation.

- At minimum loading levels, APS expects that reverse power-flow could occur at the substation feeder breaker. Consequently, an electronic relay (SEL-351) is required on the dedicated feeder serving the “Generation Facility”.

- For the sudden loss of 50-percent of the solar generation, APS does not expect the “bus flicker” at Hyder Substation to exceed 2.30 % or the “primary flicker” on the dedicated feeder to exceed 2.50 %. For this rural area, these values are acceptable to APS.

- APS does not anticipate any coordination issues between the GF’s primary meter and the substation breaker in Hyder Substation.

- APS is required to remotely monitor the Q64 generation facilities for power flow. APS will accomplish this using the EMS system in conjunction with the RTU’s, their respective metering transducers, and the dedicated phone line (VG-36).
Appendix A

APS Distribution Generator

Interconnection Standard Diagram
APS DISTRIBUTION GENERATOR INTERCONNECTION STANDARD

(EACH PROPOSED PROJECT IS SUBJECT TO APS CASE-BY-CASE REVIEW)

NOTES:
- ADDITIONAL RELAYS WILL BE REQUIRED AT CUSTOMER'S GENERATING FACILITY
- A RTU WILL BE REQUIRED AT CUSTOMER'S SITE TO REPORT:
 BREAKER STATUS
 KW
 KVAR
 VOLTS
 KWh

APPS OWNED FACILITIES

CUSTOMER OWNED FACILITIES

APS OPERATIONAL CONTROL/JURISDICTION
Appendix B

APS Interconnection Requirements for Distributed Generation (IRDG)
Interconnection Requirements

For

Distributed Generation

Arizona Public Service Company
TABLE OF CONTENTS

1 INTRODUCTION ..2

2 DEFINITIONS ...4

3 APS POLICY ON CUSTOMER-OWNED GENERATION ...9

4 DISTRIBUTED GENERATION TYPES ..11

5 CUSTOMER RESPONSIBILITIES ...13

6 MUTUAL UNDERSTANDINGS ..15

7 DESIGN CONSIDERATIONS AND DEFINITION OF CLASSES ...17

8 INTERCONNECTION TECHNICAL REQUIREMENTS ...19

9 METERING REQUIREMENTS ..31

10 RATE SCHEDULES APPLICABLE TO DISTRIBUTED GENERATION32

11 APPLICATION PROCESS AND GENERAL REQUIREMENTS ...33

12 TESTING AND START-UP REQUIREMENTS ..34

13 OPERATIONAL AND MAINTENANCE REQUIREMENTS ..35

APPENDIX A ...36
1 INTRODUCTION

This manual specifies the minimum requirements for safe and effective operation of distributed generation interconnected (or paralleled) with the Arizona Public Service Company (APS) radial distribution system (21 kV or less). For installations not subject to APS’ Open Access Transmission Tariff (“OATT”) as described below, application for interconnection is made by completing and submitting to APS the applicable Interconnection Application (Static Inverter or Rotating machinery) along with the required Supplementary Information specified in Appendix A at the back of this manual.

Installations that are directly connected to, or backfeed onto the transmission system or engage in sale for resale to entities other than APS have additional APS requirements. In such cases an interconnection application needs to be made in accordance with APS’ Open Access Transmission Tariff (“OATT”). Further information can be obtained by accessing the following website: http://www.oatioasis.com/azps/index.html and clicking on the link entitled Applications.

For the purpose of simplicity, the term "Customer" will be used here to refer to any distributed generator, cogenerator or small power producer, even though they may not actually be purchasers of power from APS, and includes any independent party or entity that either invests in, owns or operates a distributed generator or generation facility.

Customers applying for the interconnection of certain static inverter systems in conjunction with making an application to participate in a distributed generation incentive program being offered by APS may be allowed to complete a different interconnection application other than that included in Appendix A. Additional information is available on the aps.com website. However, it is important to note that regardless of the interconnection application submitted, the interconnection technical requirements outlined in this document govern.

Customers and APS personnel shall use this document when planning the installation of distributed generation. Note that these requirements may not cover all details in specific cases. The Customer should discuss project plans with APS before designing the facility or purchasing and installing equipment. This manual must be applied in conjunction with the following APS documents that pertain to the parallel operation of Customer-owned distributed generation with the APS electrical distribution system:

- Schedule #1, Terms and Conditions for the Sale of Electric Service
- Schedule #2, Terms and Conditions for Energy Purchases from Qualified Cogenerators and Small Power Production Facilities
- Schedule #5, Guidelines for Electric Curtailment.
- APS Electric Service Requirements Manual (“ESRM”)
The minimum required protective relaying and/or safety devices and requirements specified in this manual, are for protecting only APS facilities and the equipment of other customers from damage or disruptions caused by a fault, overcurrent condition, malfunction or improper operation of the distributed generating facility. These Requirements are also necessary to ensure the safety of utility workers and the public. Minimum protective relaying and interconnection requirements do not include additional relaying, protective or safety devices as may be required by industry and/or government codes and standards, equipment manufacturer requirements and prudent engineering design and practice to fully protect Customer’s generating facility or facilities; those are the sole responsibility of the Customer.

The information contained in this manual contains general information about the interconnection requirements for customer-owned distributed generation. In addition to all applicable regulatory, technical, safety, and electrical requirements and codes, which are not contained in their entirety in this manual, Customers will also be subject to contractual and other legal requirements, which are only summarized in this manual. Those regulations, requirements, contracts and other materials contain complete information concerning interconnection and govern over the general provisions in this manual.

The technical interconnection requirements outlined in this manual shall also apply to any interconnected utility owned or operated distributed generation facility.

This document, as well as the various Agreements and rate schedules, is subject to revision from time to time. Please check with APS for the latest revision prior to commencing with your project.

APS is committed to making sure that interconnection applications are handled promptly, and to do everything possible to complete the interconnection process in a safe and timely manner. At APS, we look forward to working with you to ensure a successful generation project.
2 DEFINITIONS

The following terms, as used in this manual, shall have the meanings specified:

AHJ: Authority Having Jurisdiction. The organization, office, or individual responsible for enforcing the requirements of a code or standard or for approving equipment, materials, an installation, or a procedure.

ANSI: American National Standards Institute. See www.ansi.org.

Application: The standard form for applying to interconnect a Generating Facility with the Utility system also referred to as the "Interconnection Application".

APS: Arizona Public Service Company

Arizona Corporation Commission ("ACC" or "Commission"): The regulatory agency of the State of Arizona having jurisdiction over public service corporations operating in Arizona.

Backfeed: To energize a section of a Utility electric system that is supplied from a source other than its normal source.

Business Day: Monday through Friday, excluding Federal and Arizona State Holidays.

Clearance: A Clearance is a statement by one having complete authority over all parts of a circuit or piece of electrical equipment that said circuit or equipment is disconnected from all known sources or power. It is assurance that all proper precautionary measures have been taken and workers may proceed with grounding the circuit.

Clearance Point: The physical location on a section of a power line or equipment that is to be visibly disconnected from all known power sources of power.

Cogeneration Facility: Any facility that sequentially produces electricity, steam or forms of useful energy (e.g., heat) from the same fuel source and which are used for industrial, commercial, heating, or cooling purposes.

Customer: An electric consumer that generates electricity on the consumer’s side of the Utility meter. For the purpose of this document a Customer is considered to be the APS Account Holder or Customer of Record. A Customer may include any independent party or entity that either invests in, owns or operates a Generating Facility.

Disconnect Switch: A visible open disconnect device that the Customer is required to install and maintain in accordance with the requirements set forth in this document. It will completely isolate the Customer's Generating Facility from the Utility grid.

Distributed Generation (DG): Any type of electrical generator, static inverter or Generating Facility interconnected with the Distribution System that either (a) has the capability of being operated in electrical parallel with the APS distribution system, or (b)
can feed a customer load that can also be fed by the APS electrical system. A distributed generator is often referred to as a “Generating Facility” or “generator” in this document.

Distribution System: The infrastructure constructed, maintained, and operated by APS to deliver electric service at the distribution level (21 kW or less) to retail customers.

ESRM: APS Electric Service Requirements Manual.

Electric Supply/Purchase Agreement: An agreement, together with appendices, signed between APS and the Customer covering the terms and conditions under which electrical power is supplied to and/or purchased from APS.

Fault Current: The level of current that can flow if a short circuit is applied to a voltage source.

Generator: An induction or synchronous machine or static inverter used to produce electrical power.

Generating Facility (GF): All or part of the Customer's electrical generator(s) or inverter(s) together with all protective, safety, and associated equipment necessary to produce electric power at the Customer's facility. A Generating Facility also includes any Qualifying Facility (QF).

Good Utility Practice: Any of the practices, methods, and acts engaged in or approved by a significant portion of the electric industry during the relevant time period, or any of the practices, methods, and acts which, in the exercise of reasonable judgment in light of the facts known at the time the decision was made, could have been expected to accomplish the desired result at a reasonable cost consistent with good business practices, reliability, safety, and expedition. Good Utility Practice is not intended to be limited to the optimum practice, method, or act to the exclusion of all others, but rather to be acceptable practices, methods, or acts generally accepted in the region.

IEEE: The Institute of Electrical and Electronic Engineers. See www.ieee.org.

Interconnection: The physical connection of the Customer's Generating Facility to the Utility system.

Interconnection Agreement: An agreement, together with appendices, signed between APS and the Customer, covering the terms and conditions governing the Interconnection and parallel operation of the Generating Facility with APS.

Interconnection Generation Design Review Agreement: An agreement signed between APS and the Customer covering the terms for APS to proceed with a detailed study of the impact of the Customer’s DG on APS’ System.
Interconnection Study: A study or studies that may be undertaken by APS (or an APS designated third party) in response to its receipt of a completed Application for Interconnection and parallel operation with the APS system. Interconnection studies may include, but are not limited to, Interconnection Feasibility Studies, System Impact Studies, and Facilities Studies.

Island: A condition in which a portion of a Utility electric power system is energized solely by one or more local electric power systems throughout the associated Point of Interconnection while that portion of the Utility electric power system is electrically separated from the rest of the Utility electric power system.

Metering: The function related to measuring the transfer of electric power and energy.

Minimum Protective Devices, Relays, and Interconnection Requirements: The minimum required protective relaying and/or safety devices or requirements specified in this manual, as may be revised from time to time, for the purpose of protecting only APS and its other customer facilities from damage or disruptions caused by a fault, malfunction or improper operation of the Customer’s GF. Minimum Protective Relaying and Interconnection Requirements do not include relaying, protective or safety devices as may be required by industry and/or government codes and standards, equipment manufacturing and prudent engineering design and practice to fully protect the Customer’s GF or facilities; those are the sole responsibility of the Customer.

Momentary Parallel System: A Momentary Parallel System is one that transfers electrical load between the Utility grid and the Customer’s Generating Facility by means of a “make-before break” transfer scheme. Momentary Parallel Systems synchronize the Generating Facility with the Utility grid for a period not to exceed ten seconds for the purpose of uninterrupted load transfer.

NEC: National Electric Code. See www.necdirect.org

NEMA: National Electrical Manufacturers Association. See www.nema.org.

Non-Parallel Connection Agreement: An agreement, together with appendices, signed between APS and the Customer, covering the terms and conditions governing the non-parallel connection and operation of the Generation Facility with APS.

OSHA: Occupational Safety and Health Administration. See www.osha.com

Parallel System: A Generating Facility that is electrically interconnected to a bus common with the Utility’s electric distribution system, and operates in parallel either on a momentary or continuous basis.

Point of Interconnection: The physical location where APS’ service conductors are connected to the Customer’s service conductors or bus to allow parallel operation of the Customer’s Generating Facility (GF) with APS’ electric distribution system.
Primary Network: An AC power distribution system that uses two or more dedicated primary voltage feeders, connected in parallel, to simultaneously supply power to one customer. The system includes automatic protective devices intended to isolate faulted primary feeders, while maintaining uninterrupted service to the customer served from the other primary feeder circuit(s).

Qualifying Facility (QF): Any Cogeneration or Small Power Production Facility that meets the criteria for size, fuel use, efficiency, and ownership as promulgated in 18 CFR, Chapter I, Part 292, Subpart B of the Federal Energy Regulatory Commission’s Regulations.

Radial Line: A distribution line that originates from a substation and is normally not connected to another substation or another circuit sharing the common supply of electric power.

Reclosing: The act of automatically re-energizing a utility line in an attempt to restore power.

Relay: An electric device that is designed to interpret input conditions in a prescribed manner and after specified conditions are met to respond to cause contact operation or similar abrupt change in associated electric control circuits.

Secondary Spot Network System: An AC power distribution system in which a Customer is simultaneously served from three-phase, four-wire low-voltage (typically 480V) circuits supplied by two or more network transformers whose low-voltage terminals are connected to the low-voltage circuits through network protectors. The low voltage circuits do not have ties to adjacent or nearby secondary network systems. The secondary spot network system has two or more high-voltage primary feeders. These primary feeders are either dedicated network feeders that serve only other network transformers, or a non-dedicated network feeder that serves radial transformers in addition to the network transformer(s), depending on network size and design. The system includes automatic protective devices and fuses intended to isolate faulted primary feeders, network transformers, or low-voltage cable sections while maintaining uninterrupted service to the customers served from the low-voltage circuits.

Separate System: The operation of a Generating Facility that has no possibility of operating in parallel with, or backfeeding onto, APS’ system.

SES: Service Entrance Section. The Customer-owned main electrical panel or equipment located at its premises to which the Utility delivers electric energy via the Utility service drop or service lateral.

Small Power Production Facility: A facility that uses primarily biomass, waste or renewable resources, including wind, solar, and water to produce electric power.

Transfer Switch: An automatic or manually operated device for transferring one or more load conductor connections from one power source to another (e.g. Generating Facility).
Transfer Trip Scheme: A form of remote trip in which a communication channel is used to transmit a trip signal from the relay location (e.g. utility substation) to a remote location (e.g. Generating Facility).

Transmission System: Utility-owned high-voltage lines (69 kV or higher) and associated equipment for the movement or transfer of electric energy between power plants and the distribution system.

UL: Underwriters Laboratories Inc. See www.ul.com.

Utility: The electric distribution company (APS) that constructs, operates and maintains the electrical distribution system for the receipt and/or delivery of power.

Utility-grade Relays: Relays specifically designed to protect and control electric power apparatus, tested in accordance with the following ANSI/IEEE standards:

3 APS POLICY ON CUSTOMER-OWNED GENERATION

Any Customer qualified under the Public Utility Regulatory Policies Act (PURPA) of 1978, may operate his generating equipment in parallel with the APS radial distribution system provided the Customer provides equipment that will:

(a) not present any hazards to APS personnel, other customers or the public,
(b) minimize the possibility of damage to APS and other customer equipment,
(c) not adversely affect the quality of service to other customers, and
(d) minimally hamper efforts to restore a feeder to service (specifically when a clearance is required).

In addition, the Customer must comply with the following prior to ever paralleling a generator or inverter with APS:

(a) The Generating Facility must meet all the minimum interconnection, safety, and protection requirements outlined in this manual,
(b) Customer must sign an Interconnect Agreement, as well as an Electric Supply/Purchase Agreement, as applicable, with APS,
(c) Customer must comply with and is subject to all applicable service and rate schedules and requirements, rate tariffs and other applicable requirements as filed with and approved by the Arizona Corporation Commission, and
(d) The Generating Facility must be inspected by APS and written permission to parallel must be obtained from APS.

It is the policy of APS to also permit customer generating equipment that does not qualify under PURPA to operate in parallel with the APS radial distribution system provided that all of the conditions outlined above are complied with. Due to relay coordination and potential backfeed problems, APS cannot permit any distributed generation with an AC nameplate output rating of greater than 10 kW to be connected to a Primary or Secondary Spot Network System, without a detailed Interconnection Study being undertaken at Customer’s expense to determine, among other things, special relaying, communication channels and other operational constraints that will need to be implemented. A DG connected to a network system will nonetheless not be permitted to backfeed any power into the APS system.

The minimum protective and safety devices (relays, circuit breakers, disconnect switch, etc.) specified in this manual must be installed and placed into service before allowing parallel operation of Customer’s generation facilities with the APS system. The purpose of these devices is to isolate the Customer’s generating equipment from the APS system whenever faults, over-current conditions, or disturbances occur, and also for maintenance purposes. Modifications to the APS electrical system configuration or protective equipment may also be required at the expense of the Customer in order to accommodate parallel generation.
APS will not assume any responsibility for the protection of the Customer’s generator(s), or of any other portion of the Customer’s electrical equipment. The Customer is fully and solely responsible for protecting his equipment in a manner to prevent any faults or other disturbances from damaging the Customer’s equipment.

In addition to complying with any other required codes, ordinances and statues, Customer must obtain an electrical permit and inspection indicating that the Customer’s generating facility complies with the NEC. In the event that a Customer’s GF is located in a locality where there is no AHJ, or the AHJ does not issue a permit or perform an inspection of the GF, then the Customer will be required to sign a “Letter-in-Lieu of Electrical Clearance”. APS will forward such letter for Customer’s signature.

APS can disallow the interconnection of a Customer’s generating facility if, upon review of the Customer’s design, or as the result of a site inspection, it determines that the proposed design is not in compliance with applicable safety codes, or is such that it could constitute a potentially unsafe or hazardous condition.

If APS believes that there may be a potential safety issue or code violation then APS reserves the right to forward the GF diagrams to, and/or discuss same, with the AHJ.
4 DISTRIBUTED GENERATION TYPES

Distributed generation is any type of generator or generating facility which has the potential (a) for feeding a customer load, where this load can also be fed by, or connected to, the APS electrical distribution system, or (b) for electrically paralleling with, or for feeding power back into APS’ electrical distribution system.

Distributed generators include induction and synchronous electrical generators as well as any type of electrical inverter capable of producing A/C power. A Separate System, or Emergency or Standby Generation System, is designed so as to never electrically interconnect or operate in electrical parallel with APS’ system. A Parallel System, or Interconnected Generation System, is as any generator or generation system that can parallel, or has the potential to be paralleled via design or normal operator control, either momentarily or on a continuous basis, with APS’ system.

The Customer may elect to run his generator as a separate system with non-parallel load transfer between the two independent power systems, or he may run it in parallel with the APS system. A description and the basic requirements for these two methods of operation are outlined below.

4.1 Separate System

A separate system is one in which there is no possibility of electrically connecting or operating the Customer’s generation in parallel with the utility’s system. The Customer’s equipment must transfer load between the two power systems in an open transition or non-parallel mode. If the Customer claims a separate system, APS may require verification that the transfer scheme meets the non-parallel requirements.

Emergency or Standby generators used to supply part or all of the Customer’s load during a utility power outage must be connected to the Customer’s wiring through a true double throw, “break-before-make” transfer switch specifically designed and installed for that purpose. The transfer switch must be of a fail-safe mechanical throw over design, which will under no circumstances allow the generator to electrically interconnect or parallel with APS’ system. The transfer switch must always disconnect the Customer’s load from APS’ power system prior to connecting it to the generator. Conversely, the transfer switch must also disconnect the load from the generator prior to re-connecting it back to the APS system. These requirements apply to both actual emergency operations as well as to testing the generator. All transfer switches and transfer schemes must be tested to UL Standard 1008 and must be inspected and approved by the AHJ.

Portable generators are not designed to be connected to a building’s permanent wiring system, and are not to be connected to any such wiring unless a permanent and approved transfer switch is used.
Failure to use a transfer switch can result in backfeed into the APS system – the generator voltage can backfeed through the APS transformer and be stepped up to a very high voltage. This can pose a potentially fatal shock hazard to anyone working on the power lines or on utility equipment.

Other than the requirements outlined above in this section, APS has no further technical interconnection requirements for a separate system.

4.2 **Parallel System**

A parallel, or interconnected, generator is connected to a bus common with the utility’s system, and a transfer of power between the two systems is a direct result. A consequence of such interconnected operation is that the Customer’s generator becomes an integral part of the utility system that must be considered in the electrical protection and operation of the utility system.

Parallel generators encompass any type of distributed generator or generating facility that can electrically parallel with, or potentially backfeed the utility system. Additionally, any generator system using a “closed transition” type transfer switch or any multi-breaker or multi-switch transfer scheme, or an electrical inverter that can be configured or programmed to operate in a “utility interactive mode” constitutes a potential backfeed source to the APS system, and is classified as an interconnected generator.

APS has specific interconnection, inspection and contractual requirements, as outlined in this manual that must be complied with and information that needs to be submitted for all interconnected generators. These requirements include a “visible open” disconnect switch meeting certain requirements to isolate the Customer’s system from APS’ system, as well as protective relaying, metering, special rate schedules, and other safety and information requirements. The Customer will be responsible for having the generation system protective schemes tested by a qualified testing/calibration company. APS personnel will inspect the system and the Customer will be required to sign an Interconnect Agreement and, as applicable, an Electric Supply/Purchase Agreement with APS.

In certain instances, APS and the Customer will need to sign a “Non-Parallel Connection Agreement” and/or an “Operating Agreement”. APS will advise the Customer of any such requirements after reviewing the proposed design.

APS does not extend “blanket approval” to any specific type of generator or generator scheme since each project is site specific and needs to be reviewed on a case-by-case basis.

In addition to the various other requirements specified in this document, Parallel Systems shall specifically comply with the technical requirements outlined in the Interconnection Technical Requirements section (Section 8) of this document.
5 CUSTOMER RESPONSIBILITIES

The Customer is responsible for all facilities required to be installed solely to interconnect the Customer’s generation facility to the APS system. This includes connection, transformation, switching, protective relaying, metering and safety equipment, including a visibly-open Disconnect Switch and any other requirements as outlined in this manual, the ESRM and applicable rate schedules as well as any other special items specified by APS. All such Customer facilities are to be installed by the Customer at the Customer’s sole expense. In the event that additional facilities are required to be installed on the APS system to accommodate the Customer’s generation, APS will install such facilities at the Customer’s expense. APS may also charge the Customer for any administrative costs and/or the costs of studies required to interconnect the Customer’s generation.

The Customer will own and be responsible for designing, installing, operating and maintaining:

(a) The generating facility in accordance with the requirements of all applicable electric codes, laws and governmental agencies having jurisdiction.

(b) Control and protective devices, in addition to minimum protective relays and devices specified in this manual, to protect its facilities from abnormal operating conditions such as, but not limited to, electric overloading, abnormal voltages, and fault currents. Such protective devices must promptly disconnect the generating facility from APS’ system in the event of a power outage on APS system.

(c) Interconnection facilities on the Customer’s premises which may be required to deliver power from the Customer’s generating facility to the APS system at the Point of Interconnection.

Due to risks associated with interconnecting and operating a distributed generating facility with the APS system, such as serious bodily injury, death or property damage, it is recommended that every Interconnection Customer protect itself with insurance or other suitable financial instrument sufficient to meet its construction, operating and liability responsibilities. APS does not require that the Interconnection Customer negotiate any policy or renewal of any policy covering any liability through a particular insurance provider, agent, solicitor or broker.

All interconnected Customers will be required to sign, in addition to any other purchase, supply or other standby or special agreements as may be applicable, an Interconnect Agreement with APS. Customers that connect a static inverter to the utility, and which will be programmed so as not to backfeed into the utility system (i.e. non-utility interactive mode), will need to sign a Non-Parallel Connection Agreement with APS, since such an arrangement can constitute a potential backfeed source.
Customers that purchase power from, or sell power to, APS may be required to sign an Electric Supply/Purchase Agreement with APS.

In the event that the Customer's facility is fed by more than one APS electrical service, the Customer will be responsible for installing appropriate electrical equipment and controls to ensure that the APS services will under no circumstances ever paralleled.
6 MUTUAL UNDERSTANDINGS

6.1 Interconnections

APS will not install or maintain any lines or equipment on a Customer’s side of the Point of Interconnection, except it may install electric meters and at times research equipment. Only authorized APS employees (with credentials to identify their company affiliation) may make and energize the service connection between the APS system and the Customer’s service entrance conductors.

Normally, the interconnection will be arranged to accept only one type of standard service at one Point of Interconnection. If a Customer’s generating facility requires a special type of service, or if sales to APS will be at a different voltage level, the services will only be provided according to additional specific terms that are outlined in the Electric Supply/Purchase Agreement, applicable rate schedules, or other terms and conditions governing the service.

6.2 Easements and Rights of Way

Where an easement or right of way is required to accommodate the interconnection, the Customer must provide to APS suitable easements or rights of way, in APS’ name, on the premises owned, leased or otherwise controlled by the Customer. If the required easement or right of way is on another’s property, the Customer must obtain and provide to APS a suitable easement or right of way, in APS’ name, at Customer’s sole cost and in sufficient time to meet the Interconnect Agreement requirements. All easements or rights of way must be on terms and conditions acceptable to APS.

6.3 Rate Schedules

The rate applicable to the interconnection of a Customer’s generating facility will depend on the system size, type and configuration. Because of varied and diverse requirements and operating modes associated with the interconnection, the Customer must evaluate and determine which system configuration and electric rate is most appropriate for it and whether or not it qualifies for the particular rate. APS will provide information to assist the Customer to assess the available options. The Customer remains fully responsible for such matters, however, and no APS assistance or information should be taken as constituting any representation or warranty about any particular option.

Any energy purchases from the Customer’s facility will be in accordance with the rate schedule and Electric Supply/Purchase Agreement as applicable, any changes required by law or regulation, and such applicable rates authorized by law. Generating facilities with requirements of unusual size or characteristics may require additional or special rate and contract arrangements.
If the purchase of electric energy or capacity would result in greater cost to APS than if APS generated the energy itself or purchased it from another source, APS will not be obligated to buy such energy or capacity from a Customer. When that occurs, APS will give reasonable notice to the Customer so that the Customer may discontinue deliveries or elect to sell to APS at a lower rate.

6.4 ACC JURISDICTION

The rates, terms or other contract provisions governing the electric power sold to a Customer or purchased from the Customer by APS are subject to the jurisdiction of the Arizona Corporate Commission. APS retains at all times and without restriction the right to file a unilateral ACC application for a change in requirements, charges, classification, or service, or any rule, regulation or agreement as allowed by law.
7 DESIGN CONSIDERATIONS AND DEFINITION OF CLASSES

Protection requirements are influenced by the size and characteristics of the parallel generator along with the nature and operational characteristics of the associated APS system. Therefore, similar units connected to different lines could have different protection requirements based on varying load conditions, as well as on utility feeder and transformer characteristics.

7.1 Synchronous Units

Synchronous generators are generally capable of supplying sustained current for faults on the APS system. These units can also supply isolated APS load providing the load is within the units' output capability.

Reclosing of the utility onto synchronous units must be blocked to prevent out-of-synch paralleling and must also be prevented from energizing a de-energized utility line. Automatic reclosing by APS is time-delayed which allows for automatic Customer generator separation prior to utility circuit re-energization.

7.2 Induction Units

Induction generators are basically induction motors that are mechanically driven above synchronous speed to produce electric power. These units do not have a separate excitation system and, as such, require that their output terminals be energized with AC voltage and supplied with reactive power to develop the magnetic flux. Induction generators are therefore normally not capable of supplying sustained fault current into faults on the utility system. Such units are generally not capable of supplying isolated load when separated from the utility system; however, it is possible for an induction generator to become self-excited if a sufficient amount of capacitance exists at its output terminals. Under conditions of self-excitation, an induction generator will be capable of supplying isolated load, providing the load is within the units' output capability. In most cases when self-excitation occurs it will be accompanied by a sudden increase in terminal voltage. APS and its other customers must be protected from out-of-phase closing and over-voltages that can occur whenever an induction generator becomes self-excited. Induction units must therefore be designed to automatically separate from the utility system upon loss of utility voltage and prior to reclosing of the utility feeder.

7.3 Static Inverters

Static inverters convert DC power to AC by means of electronic switching. Switching can be controlled by the AC voltage of the utility's supply system (line-commutated) or by internal electronic circuitry (forced-commutated).
Line-commutated inverters are generally not capable of operating independently of the utility's AC supply system and, as such, cannot normally supply any appreciable fault current, or continue to energize isolated loads, provided proper protective functions are in place. To accommodate such protective functions, any line-commutated inverter that is electrically paralleled with the utility system shall be tested to UL Standard for Inverters, Converters and Controllers for use in Independent Power Systems, UL1741 by a Nationally Recognized Testing Laboratory (NRTL) certified by OSHA to perform the UL1741 test standard.

Forced-commutated, or self-commutated, inverters are capable of energizing load independently of the utility system. Any forced-commutated inverter, the output of which is to be directly interconnected with the utility, would need to be specifically designed for that purpose, i.e. it would need to be designed to accommodate parallel interfacing and operation. However, it is not anticipated at this time that any forced-commutated inverters will be interconnected to the utility system. APS would consider any such interconnection on a case-by-case basis. Under no circumstance shall the self-commutated output of a “battery backup” inverter which is normally designed to energize a subpanel independently of the utility, be connected to the utility system.

7.4 Definition of Generator Size Classes

The following generator size classifications are used in determining specific minimum protective requirements for distributed generation facilities. Specified ratings are for each connection to the APS system. Customers must satisfy, in addition to the general requirements specified in this manual, the minimum relaying requirements given in this document (Section 8.7) for each generator class.

- **(a) Class I** -- 50 kW or less, single or three phase
- **(b) Class II** -- 51 kW to 300 kW, three phase
- **(c) Class III** -- 301 kW to 5,000 kW, three phase
- **(d) Class IV** -- over 5,000 kW, three phase
The requirements and specifications outlined in this section are applicable to distributed generation interconnected for parallel operation (continuous or momentarily) with APS' distribution system, unless otherwise specified. The protection and safety devices and other requirements specified in the following sections are intended to provide protection for the APS system and its workers, other APS Customers, and the general public. They are not imposed to provide protection for the Customer's generation equipment or personnel. This is the sole responsibility of the Customer.

With respect to the above protection objectives, it is necessary to disconnect a parallel generator when trouble occurs. This is to:

(a) ensure if a fault on the APS system persists, the fault current supplied by the Customer's generator is interrupted;
(b) prevent the possibility of reclosing into an out-of-sync isolated system composed of the utility distribution system, or a section thereof, and the Customer's generator;
(c) prevent reclosing into the Customer's generation system that may be out of synchronization or stalled;
(d) prevent unintentional islanding.

The protection requirements are minimal for smaller installations, but increase as the size of the Customer's generation increases. Small installations usually ensure that the generator is small compared with the magnitude of any load with which it might be isolated. Thus, for any fault on the utility system, utility protective devices will operate and normally isolate the generation with a large amount of load, causing voltage collapse and automatic shutdown of the generator.

For larger installations the probability of isolated operation is higher since the available generation may be sufficient to carry the entire load, or part thereof, of the local APS circuit. In instances where the APS system arrangement is such that it is possible that the generators will not always be isolated with comparatively large amounts of load, additional protection and generator shutdown schemes are required.

The Customer is solely responsible for the protection of his equipment from automatic reclosing by the utility. APS normally applies automatic reclosing to overhead distribution circuits. When the APS source breaker trips, the Customer must ensure that his generator is disconnected from the utility circuit prior to automatic reclosure by the utility (the automatic reclosing on APS distribution feeders is normally delayed by at least 2 seconds). Automatic reclosing out-of-sync with the Customer's generator may cause severe damage to Customer equipment and could also pose a serious hazard to Customer or Utility personnel.
8.1 General Technical Requirements

8.1.1 Customer is responsible for obtaining and maintaining all required permits and inspections indicating that Customer’s generating facility complies with all applicable codes, ordinances and statutes relating to safety, construction and operation.

8.1.2 Multiple generator connections on the same utility service are permitted subject to APS approval; however, a single Disconnect Switch for the facility will generally be required (normally located at the service entrance section).

8.1.3 In the event that a generator, or aggregate of generators, are of sufficient size to carry the (minimum) load of the APS distribution feeder, or if a generator size and physical location on a feeder is such that it could support an isolated (islanded) section of the feeder, then a transfer trip scheme, and in certain instances a dedicated utility feeder, will be required at the Customer’s expense. If a transfer trip is required, or the Customer’s generation is a megawatt or greater, a communication channel and telemetering will also be required, at the Customer’s expense, to facilitate proper parallel operation. In such instances, APS will need to perform an Interconnection Study to determine the required facilities.

8.1.4 For synchronous generators, the Customer shall ensure that any potential open points such as breakers, fused disconnect switches, etc, located between the generator breaker and utility service are appropriately equipped with either (1) keyed or other suitable mechanical interlocks to prevent them from being inadvertently opened when the generator breaker is closed, or (2) electrical contacts that will instantaneously trip the generator breaker if any such switch were opened while the generator breaker was closed.

This is to prevent the opening and subsequent (inadvertent) re-closing of such a breaker or switch onto an un-synchronized generator.

8.1.5 In the event that the utility is required to install electric meter(s) to record the output of the generator(s), Customer shall ensure that the design is such that the meter(s) are located on the utility-side of the generator breaker on a normally energized bus. Electronic meters are not designed to be de-energized for any length of time.

8.1.6 In the case that a generator is connected or tapped to the line (utility) side of a SES main breaker, as may be permitted by the NEC, the following requirements apply:

(a) A line (supply) side tap constitutes a new service as defined by the NEC and is subject to all applicable NEC requirements and/or requirements adopted by the Authority Having Jurisdiction.
(b) Any line side tap shall be made without any modifications to any factory installed and/or factory listed equipment or components, unless such tap is expressly authorized by the manufacturer and/or listing agency, and performed in strict accordance with the manufacturer’s directions and specifications.

8.1.7 The Customer is responsible for the design, installation, operation and maintenance of all equipment on the Customer’s side of the Point of Interconnection. It is strongly recommended that the Customer submit specifications and detailed plans as specified in the Interconnection Application (refer to Appendix A) for the installation to APS for review and written approval prior to ordering any equipment. Written approval by APS does not indicate acceptance by other authorities.

8.2 Disconnect Switch

The Customer shall install and maintain a stand-alone visible open, manually-operated load-break disconnect switch (“Disconnect Switch”) capable of being locked in a visibly “open” position by a standard APS padlock with a 3/8” shank that will completely open and isolate all ungrounded conductors of the Customer’s Generating Facility from the APS system. For multi-phase systems, the switch shall be gang-operated.

The Disconnect Switch blades, jaws and the air-gap between them shall all be clearly visible when the switch is in the “open” position and the front cover of the switch box is opened. It is not acceptable to have any of the “visible open” components obscured by a switch “dead front” or an arc-shield, etc, unless it is determined by APS that such can be temporarily and easily removed for the purpose of verifying a visual open. Only switches specifically designed to provide a true “visible open” are acceptable, and shall not be fused, unless expressly agreed to by APS. APS shall have the right to lock open the Disconnect Switch without notice to the Customer when interconnected operation of the Customer’s Generating Facility with the APS’ system could adversely affect APS’ system or endanger life or property, or upon termination of the Interconnect Agreement.

The Disconnect Switch shall be installed in a place so as to provide easy, unrestricted and unimpeded access to APS personnel on a 24-hour basis and must be installed adjacent to the Customer’s electrical service entrance section; however, it may be located in the immediate vicinity of the Customer’s generator or inverter, provided that APS’ access to the Disconnect Switch is not impeded, and subject to APS approval. The Disconnect Switch will be placed under the operational jurisdiction of APS for systems with a line voltage of 500V or less, and the cover of such switch will be locked closed with a standard 3/8” shank APS padlock. The Disconnect Switch shall be a stand-alone device, and electrical conductors entering into and exiting from the Disconnect Switch shall not be routed in the same conduit or raceway or in any way share a common enclosure.
The Disconnect Switch must be rated for the voltage and current requirements of the Generating Facility, and must be listed and conform to all applicable UL, ANSI and IEEE standards. The switch shall be installed in accordance with the National Electric Code (NEC) and APS requirements, and shall be located between 36” and 60” above grade and include a 36” by 36” clear working space in front of the switch. The disconnect switch shall not be located behind an electrically operated gate or door unless the electric operator is backed up by an uninterruptible power source to ensure that it can be operated in the event of a utility power outage. In the event that a lock-box is required to be installed by the Customer for APS to gain access to the disconnect switch or any other APS equipment, the lock-box needs to be installed within 36” of the door or gate, etc., and it shall be located no less than 36” above grade and no more than 60” above grade.

The switch enclosure shall be properly grounded via a ground wire attached to a factory provided grounding lug or an appropriately UL listed grounding lug or terminal. Under no circumstances shall the disconnect switch enclosure be used as a conduit or raceway for any conductors other than those phase conductors being switched and the associated grounded conductor (neutral) and grounding conductor (equipment ground).

In cases where the Disconnect Switch will be installed on a line at a voltage above 500V, APS has specific grounding requirements that will need to be incorporated into the Disconnect Switch. APS also has certain requirements that will need to be adhered to for the purpose of obtaining electrical clearances, including the establishment of an “Operating Agreement” which must be signed with the Customer. Under certain circumstances APS may accept a Customer installed rack-out breaker, along with a racking tool and grounding breaker (to ground the utility side), in order to effect an electrical clearance. In these cases, APS will work with the Customer to determine the best option and ensure that all appropriate safety requirements are met.

8.3 Dedicated Transformer

Customer generators with a combined total rating of over 10 kW, as measured at the service entrance, may be required to be isolated from other customers fed off the same utility transformer by a dedicated power transformer connecting to the utility distribution feeder. The primary purpose of the dedicated transformer is to ensure that (a) the generator cannot become isolated at the secondary voltage level with a small amount of other-customer load, and (b) the generator does not contribute any significant fault current to other customer’s electrical systems. It also helps to confine any voltage fluctuation or harmonics produced by the generator to the Customer’s own system. APS will specify the transformer winding connections and any grounding requirements based on the specific Customer site location and generator type.
8.4 Power Quality

In order to minimize interference on the utility system the Customer must ensure that the electrical characteristics of its load and generating equipment meet, as a minimum, the specifications outlined below.

8.4.1 Power Factor
The power factor of the Customer’s facility, as measured at the Point of Interconnection shall not be less than ninety percent (90%) lagging, but shall not be leading, unless agreed to by APS.

8.4.2 Current Imbalance
The phase current imbalance for a three-phase system as measured at the Customer’s service entrance section shall not be greater than ten percent (10%) at any time.

8.4.3 Harmonics
The electrical output of the Customer’s generating facility shall not contain harmonic content which may cause disturbances on or damage to APS electrical system, or other customer’s systems, such as but not limited to computer, telephone, communication and other sensitive electronic or control systems. Harmonics, as measured at the Point of Interconnection, shall not exceed the limits promulgated in IEEE 519-1992.

8.4.4 Power Fluctuations
The Customer must exercise reasonable care to assure that the electrical characteristics of its load and generating equipment, such as deviation from sine wave form or unusual short interval fluctuations in power demand or production, shall not be such as to result in impairment of service to other customers or in interference with operation of computer, telephone, television or other communication systems or facilities.

8.4.5 Voltage Flicker
If Customer utilizes the APS system to facilitate start-up of its generating facility, the voltage flicker level shall not exceed APS standards. (Refer to IEEE 519-1992).

8.5 Voltage Requirements

Customer generating equipment must be rated at 60 Hertz, and be either a single or three-phase system connected at a standard utility voltage that may be selected by the Customer subject to utility availability at the premises.

The DG shall follow, and not attempt to oppose or regulate changes in the voltage at the Point of Interconnection.
8.6 Labeling Requirements

8.6.1 General Requirements
The Customer shall conform to the National Electric Code (NEC), as adopted by the local Authority Having Jurisdiction, for labeling of all GF equipment, including the service entrance section. APS will assume responsibility for labeling any utility-owned equipment. All APS-required labels shall consist of a permanently attached weatherproof placard with engraved letters.

8.6.2 Disconnect Switch
The Customer shall label the Disconnect Switch “Generator Utility Disconnect Switch” or “Photovoltaic System, Wind Turbine, etc, Utility Disconnect Switch”, as the case may be. In the event APS grants approval to install the Disconnect Switch at a location other than the electrical service entrance section (SES), Customer shall install a placard at the SES giving concise directions to, and the location of, the Disconnect Switch.

In addition, a warning label shall be mounted on the Disconnect Switch front cover with the following words: “Warning: Electric Shock Hazard. Do Not Touch Terminals. Terminals On Both The Line And Load Sides May Be Energized In The Open Position”.

8.6.3 Generator meter
The Customer shall label any meter installed to meter the electrical output of a generator as “Generator Meter” or “Photovoltaic System, Wind Turbine, etc, Meter”, as the case may be.

8.7 Protective Relaying Requirements

8.7.1 General Requirements

8.7.1.1 The Customer shall be solely responsible for properly protecting and synchronizing his generator(s) and/or static inverter(s) with the APS system.

8.7.1.2 For rotating generators, Customer facility shall include an automatic interrupting device (normally the generator breaker) that is rated to interrupt available fault (short circuit) current and is tested to applicable UL standards. The interrupting device shall be tripped, as a minimum, by all protective devices required herein.

8.7.1.3 Inherent characteristics of induction disk type voltage and frequency relays render their use unsuitable for some generator interface protection applications. Therefore, relays with definite level and timing characteristics (e.g., solid state type relays) will
be necessary to meet the minimum requirements established herein.

8.7.1.4 For rotating generator classes II and above (>50 kW) utilizing discrete relays that require both voltage and frequency relay protection, separate and independent voltage and frequency relays and associated trip paths to the automatic interrupting device are required. This is to ensure a redundant trip function in the event of a single relay failure or out-of-tolerance condition.

It is acceptable however, for the over/under voltage functions to be integrated into a single o/u voltage relay, and for the over/under frequency functions to be integral to a single o/u frequency relay.

Microprocessor-based protective relays may be used, provided that the required functionality and redundancy described is demonstrated.

8.7.1.5 For rotating generator protective schemes that utilize microprocessor based, multi-function relays, the protective relay failure alarm contacts will be configured to trip the automatic interrupting device.

8.7.1.6 The generator protective scheme shall be of a fail-safe design such that loss of the protection scheme control power will immediately cause the automatic interrupting device to open.

8.7.1.7 With the addition of generation at a Customer site, ground fault current magnitude might increase to level where the existing grounding grid is insufficient to protect personnel from step or touch potentials. The Customer shall ensure the adequacy of the facility grounding grid to keep any step and touch potentials at a safe level.

8.7.1.8 The Customer shall ensure that the GF protective relaying and controls are adequately protected from electrical surges that may result from lightning, utility switching or electrical faults.

8.7.2 Minimum Relaying Requirements

8.7.2.1 Class I (Single or Three Phase: 50 kW or less)

1. The minimum protection required for induction and synchronous generators is an under-voltage relay.
2. Synchronous generators require a synchronizing scheme, either manual with a synch check relay, or an automatic synchronizer.

3. Static inverters shall be tested to UL Standard for Inverters, Converters and Controllers for use in Independent Power Systems, UL1741, by a Nationally Recognized Testing Laboratory (NRTL) certified by OSHA to perform the UL1741 test standard.

8.7.2.2 Class II (Three Phase: 51-300 kW)

1. The minimum protection required for induction and synchronous generators is overvoltage, undervoltage, overfrequency, and underfrequency.

2. Synchronous generators require a synchronizing scheme, either manual with a synch check relay, or an automatic synchronizer.

3. Inverters shall be tested to UL Standard for Inverters, Converters and Controllers for use in Independent Power Systems, UL 1741, by a Nationally Recognized Testing Laboratory (NRTL) certified by OSHA to perform the UL141 test standard.

4. For installations interconnected to the utility through a transformer with connections that will not supply current to a ground fault on the utility system, a ground fault detector may be necessary. The utility will advise Customer of any such requirements after a preliminary review of the Customer's proposed installation.

5. Other equipment such as supervisory control and alarms, telemetering and associated communications channel may be necessary. This is especially the case when the generator, or an aggregate of generators, is large relative to the minimum load on a feeder or sectionalized portion thereof. APS will advise Customer of any communications requirements after a preliminary review of the proposed installation.

8.7.2.3 Class III (Three Phase: 301-5,000 kW)

1. For this class of installation, utility grade protection devices and equipment are required.

2. The minimum protection required for induction and synchronous generators is overvoltage, undervoltage, overfrequency, and underfrequency.
3. Synchronous generators require a synchronizing scheme, either manual with synch check relay, or an automatic synchronizer.

4. Static inverters shall be tested to UL Standard for Inverters, Converters and Controllers for use in Independent Power Systems, UL1741, by a Nationally Recognized Testing Laboratory (NRTL) certified by OSHA to perform the UL1741 test standard. In addition, a redundant over/under voltage relay will be required for inverters rated at greater than 500 kW.

5. For installations interconnected to the utility through a transformer with connections that will not supply current to a ground fault on the utility system, a ground fault detector may be necessary. The utility will advise Customer of any such requirements after a preliminary review of the Customer's proposed installation.

6. Other equipment such as supervisory control and alarms, telemetering, and associated communications channel may be necessary. APS will advise Customer of any such requirements after a preliminary review of the proposed installation.

8.7.2.4 Class IV (Three Phase: Greater than 5,000 kW)

 Note: Induction Generators or Line Commutated Inverters in this size range are not anticipated.

2. For this class of installation, utility-grade protective devices and equipment are required.

3. Relays for overvoltage, undervoltage, overfrequency, and underfrequency are required.

4. Synchronous generators require a synchronizing scheme, either manual with synch check relay, or an automatic synchronizer.

5. A ground time overcurrent and ground instantaneous overcurrent relay, or for installations interconnected to the utility through a transformer with connections that will not supply current to a ground fault on the utility system, a ground fault detection scheme is required.
6. The following additional protective functions are also required:

 (a) Voltage-controlled time overcurrent
 (b) Loss of excitation
 (c) Overexcitation
 (d) Negative sequence time overcurrent

7. Other equipment such as supervisory control and alarms, telemetering, and associated communications channel are generally required. APS will advise Customer of any such requirements after a preliminary review of the proposed installation.

The minimum protective relaying requirements for parallel operation of distributed generation are summarized in the following table below. Note that depending on the specific application of the GF, a Reverse Current relay may be required. APS will advise the Customer of any such requirement after a preliminary review of the proposed installation.
Summary of Minimum Protective Relaying Requirements

<table>
<thead>
<tr>
<th>Class</th>
<th>Induction Generator</th>
<th>Synchronous Generator</th>
<th>Static Inverter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I 50 kW or less</td>
<td>Undervoltage</td>
<td>Undervoltage, Synchronizing</td>
<td>UL 1741</td>
</tr>
<tr>
<td>Class II 51 to 300 kW</td>
<td>Overvoltage, Undervoltage, Overfrequency, Underfrequency</td>
<td>Overvoltage, Undervoltage, Overfrequency, Underfrequency, Synchronizing</td>
<td>UL 1741</td>
</tr>
<tr>
<td>Class III 301 to 5,000 kW</td>
<td>Overvoltage, Undervoltage, Overfrequency, Underfrequency</td>
<td>Overvoltage, Undervoltage, Overfrequency, Underfrequency, Synchronizing</td>
<td>UL 1741 with redundant Over/Under voltage for > 500 kW</td>
</tr>
<tr>
<td>Class IV Greater than 5,000 kW</td>
<td>No induction generators of this size anticipated</td>
<td>Overvoltage, Undervoltage, Overfrequency, Underfrequency, Synchronizing, Ground Time Overcurrent, Ground Instantaneous Overcurrent, Voltage-controlled Time Overcurrent, Loss of Excitation, Overexcitation, Negative Sequence Time Overcurrent</td>
<td>No inverters of this size anticipated</td>
</tr>
</tbody>
</table>
8.7.3 Relay Settings

Voltage and frequency relays needed for minimum interface protection for all classes will have setting limits as specified below.

8.7.3.1 Undervoltage relays will operate at no less than 80% of the nominal voltage level and will have a maximum time delay of 1.0 seconds.

8.7.3.2 Overvoltage relays will operate with a maximum time delay of 1.0 seconds for a voltage range of greater than 110% and less than 120% of nominal voltage. The relay will operate instantaneously at 120% or greater of nominal voltage to provide a maximum clearing time of 10 cycles.

8.7.3.3 Underfrequency relays will operate at no less than 58 Hz and have a maximum time delay of 1.0 seconds.

8.7.3.4 Overfrequency relays will operate instantaneously at any frequency greater than 60.5 Hz to provide a maximum clearing time of 10 cycles.

Additional settings for Class IV installations and/or any other relays that may be required due to unusual circumstances will be handled on an individual basis.
9 METERING REQUIREMENTS

This section applies to Customer owned generation that electrically parallels with the APS distribution system.

The Customer must provide and install, at Customer’s expense, meter sockets and metering cabinets in accordance with APS service standards, in locations acceptable to APS to accommodate any meter(s) that are required by rate schedule(s) or other applicable APS agreement(s). Such standards are specified in the APS document titled “Electric Service Requirements”, which can be accessed at the following website: http://esp.aps.com/resource/esrm.asp.

APS will furnish, own, install and maintain billing meter(s) at the point of delivery to the Customer’s facility, and any meter(s) that may be required by the applicable electric rate schedule to measure the output of the generator(s). The responsibility for the costs of providing and maintaining any required meters will be specified in the applicable rate schedule or other APS agreement.

Under no circumstances shall any metering enclosure be used as a conduit or raceway for any conductors other than those phase conductors being metered and the associated grounded conductor (neutral) and grounding conductor (equipment ground).

In cases where the applicable rate schedule or other APS agreement requires billing meter(s) to be installed on the output of the facility generators, Customer must provide a dedicated phone line to each such generator meter and also to the facility service entrance section main billing meter and/or sub meters if necessary. Each dedicated phone line is to be landed on the APS-provided telephone interface module, normally located within two feet of the meter.
10 RATE SCHEDULES APPLICABLE TO DISTRIBUTED GENERATION

The rate schedules shown below are applicable to Customer owned generation that electrically parallels with the APS electric distribution system. Note that participation under a particular rate schedule is subject to the Generating Facility qualifying for that schedule.

- EPR-6, “Rates for Renewable Resource Facilities for Partial Requirements”.
- EPR-2, "Purchase Rates for Qualified Cogeneration and Small Power Production Facilities under 100kW Receiving Partial Requirements or Interruptible Service."
- E-56, “Partial Requirements Service”.

Rate schedule E-56 is applicable to customers installing generation equipment with a nameplate A/C output rating of greater than 100 kW. (Customer should consider qualifications for the EPR-6 and SCS rates before selecting the E-56 rate).

SC-S is applicable to Customers installing solar photovoltaic systems with a nameplate A/C output rating of greater than 100 kW. Customer must enter into an “SC-S Retail Electric Supply / Purchase Agreement” in order to take service under rate schedule SC-S, “Partial Requirements Standard Contract-Solar”. These agreements must be filed with the ACC for approval. (Customer should consider qualifications for the EPR-6 rate before selecting the SCS rate).

The above rates can be accessed at the following website:

The rates specified above do not apply to backup or standby generation that is used solely for emergency purposes, and that parallels with the utility for brief periods in order to effect a power transition from the utility to the backup generation and vice versa.
11 APPLICATION PROCESS AND GENERAL REQUIREMENTS

11.1 APS approvals given pursuant to the review and approval process and the Interconnection Agreement shall not be construed as any warranty of representation to Customer or any third party regarding the safety, durability, reliability, performance or fitness of Customer’s generation and service facilities, its control or protective devices or the design, construction, installation or operation thereof.

11.2 The Customer must submit written equipment specifications and plans for the installation and operation of its generating facilities, interconnection facilities, control and protective devices and facilities for APS review and advance approval prior to actual equipment installation. The applicable “Interconnection Application” form attached to this document as Appendix A must be completed and all supplementary information requested therein must be provided.

APS strongly encourages each Customer to contact and work closely with APS at the conceptual stages of the design to ensure that the project proceeds smoothly. APS will generally require a single point of contact with which to coordinate the interconnection process.

11.3 Should it be necessary for APS to upgrade its system or install additional facilities, (including but not limited to a dedicated feeder, control or protective devices, etc) in order to accommodate or protect the Customer’s generation facility or APS equipment, APS will provide the Customer with the estimated costs and construction schedule. The Customer will be responsible for all costs incurred to the extent they exceed those normally incurred by APS for customers who do not have self generation facilities, which must be paid prior to the commencement of any work.

11.4 Following APS’ approval of the Customer’s proposed generating facility and any associated facilities, the Customer cannot remove, alter or otherwise modify or change the equipment specifications, including, without limitation, the plans, control and protective devices or settings, and in general the generating facility system configuration or any facilities appurtenant thereto. If the Customer desires to make such changes or modifications, the Customer must resubmit to APS revised, plans describing the changes or modifications for approval by APS. No change or modification may be made without the prior written approval of APS.

11.5 Following APS’ approval of the Customer’s Interconnection Application and associated diagrams; APS will prepare the Interconnection Agreement, as well as any other applicable agreements (e.g. Electric Supply / Purchase Agreement) and / or other required documents for Customer’s review and signature.
12 TESTING AND START-UP REQUIREMENTS

12.1 Following APS approval of the Customer's generating facility and associated minimum interconnection requirements, the Customer shall, at a minimum, have all specified interface equipment, shutdown and associated protective devices tested and calibrated at the time of installation by qualified personnel and shall also perform functional trip testing of these relays and associated generator or inverter breaker. Calibration must include on-site bench testing of pickup and timing characteristics of the relays. Functional testing must demonstrate that each (minimum) protective relay trip function as required herein, upon a (simulated) out of tolerance input signal will trip the generator breaker, and shall also include a simulated loss of control power to demonstrate that the generator breaker will open.

A trip timing test (simulated loss of voltage) will suffice for static inverters tested to UL1741.

12.2 The Customer shall provide APS with a copy of calibration and functional test results performed at the time of commissioning of the generating facility. Customer must also notify APS at least five (5) business days in advance that such tests are to be performed and allow APS personnel to witness the tests.

12.3 The Customer is required to have a signed Interconnect Agreement with APS prior to electrically paralleling the generating facility with the APS system.

12.4 The Customer will not commence interconnected operation of its generating facility until the installation has been inspected by an authorized APS representative and final written approval is received from APS to commence interconnected operation, which approval shall not be unreasonably withheld. The Customer shall give APS at least five (5) business days prior to notice of when initial startup is to begin. APS will have the right to have a representative present during initial energizing and testing of the Customer's system.

12.5 In addition to having protective devices tested by a competent testing firm at the time of installation, the Customer shall also have such tests performed for rotating generator protective schemes at intervals not to exceed four (4) years by qualified test personnel. The Customer shall provide APS with a certified copy of such test results upon request by APS.
13 OPERATIONAL AND MAINTENANCE REQUIREMENTS

13.1 The Customer will be responsible for operating and maintaining the generator facility in accordance with the requirements of all applicable safety and electrical codes, laws and governmental agencies having jurisdiction.

13.2 The Customer shall protect, operate and maintain the generating facility in accordance with those practices and methods, as they are changed from time-to-time, which are commonly used in prudent engineering and electric utility operations and shall operate and maintain the generating facility lawfully in a safe manner and non-hazardous condition.

13.3 The Customer will allow APS and its authorized agents access to the protective relaying and control facilities to conduct whatever startup or periodic tests APS deems necessary. APS will provide the Customer with advance notice of such tests, so that the Customer’s representatives may be in attendance when such tests are performed.

13.4 In the event APS or its authorized agents lock open the Disconnect Switch, the Customer shall not remove or tamper with such lock.

13.5 APS will be allowed to install on Customer’s premises any instrumentation equipment for research purposes. Such equipment shall be owned, furnished, installed and maintained by APS.

13.6 APS (including its employees, agents and representatives) shall have the right to enter the Customer’s premises to (a) inspect the Customer’s generating facility, protective devices, and to read or test instrumentation equipment that APS may install, provided that as reasonably as possible, notice is given to the Customer prior to entering its premises; (b) maintain or repair APS equipment; (c) disconnect the generating facility without notice if, in APS’ opinion, a hazardous condition exists and such immediate action is necessary to protect persons, APS facilities or other customers’ or third parties’ property and facilities from damage or interference caused by the Customer’s generating facility, or improperly operating protective devices; (d) open the Disconnect Switch without notice if an operating clearance is required by APS personnel; (e) close the Disconnect Switch upon completion of APS work performed under an operating clearance.

13.7 Upon termination of the Interconnect Agreement, the Customer shall be responsible for ensuring that the Disconnect Switch is immediately opened, and that the electric conductors connecting the Customer’s generator(s) to the Disconnect Switch are lifted and permanently removed, so as to preclude any possibility of interconnected operation in the future. APS reserves the right to inspect the Customer’s facility to verify that the generator is permanently disconnected.
INTERCONNECTION REQUIREMENTS FOR DISTRIBUTED GENERATION

APPENDIX A

INTERCONNECTION APPLICATION

Complete all items on the applicable Interconnection Application (Static Inverter or Rotating Machinery) and forward to APS along with all Supplementary Information:

Email address: InterconnectPBI@APSC.com
Note: Please include Customer name in subject line of email.

or mail to:

Arizona Public Service Company
Attn: Interconnect
P.O. Box 53933
MS 3108
Phoenix, AZ 85072-3933

Telephone: 602-371-6160
INTERCONNECTION APPLICATION FOR STATIC INVERTERS

CUSTOMER AND SITE INFORMATION

APS Customer Account Holders Name(s) ________________________________

Company Name (if applicable) ___

Generating Facility Address ___

Customer Mailing Address ___

Telephone (day) ________________________ E-mail _________________________

APS Account Number _______________________ APS Meter No _______________

STATIC INVERTER INFORMATION

A. Manufacturer ____________________ Model No. _______________________

B. Nameplate continuous power output (AC) rating kW ___________________

 No. of Units _____________ Total System Nameplate AC kW _____________

C. Tested to UL1741? (Yes or No) ____________

 If No, explain: __

D. Energy Source (solar, wind, etc.) ___________________________________

PROPOSED OPERATION

A. (1) Specify whether the inverter will be programmed to operate in parallel with the utility, or in backup (“battery charger”) mode:

 ____ Parallel mode

 ____ Backup mode
INTERCONNECTION APPLICATION FOR STATIC INVERTERS (cont’d)

(2) If the inverter will operate in parallel with the utility, specify which one of the following options you desire (refer to Section 10):

____ Net metering in accordance with the EPR-6 rate

____ Partial Requirements Service under the SCS rate (Solar, > 100 kW)

____ Partial Requirements Service under the E-56 rate (Non Solar, > 100 kW)

____ Sell excess energy to APS in accordance with the EPR-2 rate (<100 kW)

____ None of the above. Specify: _______________________________________

B. Provide the anticipated project in-service date: ______________________________

C. Is an electrical permit and/or inspection required by the Authority Having Jurisdiction?

(Yes or No) ________________ If no, explain: ________________________________

D. Is access by APS personnel to the Utility Disconnect Switch, electric service entrance, and any utility-required inverter metering in any way restricted or impeded (e.g. fences, locks, gates, walls, animals, etc.)?

(Yes or No) ________________ If yes, explain: ________________________________

INTERCONNECTION REQUIREMENTS FOR DISTRIBUTED GENERATION

INTERCONNECTION APPLICATION FOR STATIC INVERTERS (cont’d)

SYSTEM OWNER
If the GF is owned by a person or entity other than the Customer, complete the following:

Name: __________________________ Company: __________________________
Mailing Address:__
Phone: ______________________ E-mail: _______________________________

SYSTEM OPERATOR
If the GF is to be operated by a person or entity other than the Customer, complete the following:

Name: __________________________ Company: __________________________
Mailing Address:__
Phone: ______________________ E-mail: _______________________________

INTERCONNECTION PROCESS CONTACT INFORMATION
If the primary contact for interconnection process is to be coordinated by someone other than the Customer, complete the following:

Name: __________________________ Company: __________________________
Mailing Address:__
Phone: ______________________ E-mail: _______________________________

CUSTOMER CERTIFICATION
This Application is complete and accurate to the best of my knowledge, and I hereby grant APS permission to coordinate the interconnection process with the person or entity specified above, if completed.

APS Customer Name: ___
Signature: __ Date: ____________
SUPPLEMENTARY INFORMATION

Diagrams specified below are to be specifically prepared for APS’ use, and to be submitted for all static inverter based projects. APS will not accept any copyrighted drawings. These must be site specific regarding the information requested below, without extraneous information. All diagrams are to be professionally drawn, using only black print on white paper; and are not to be in color or shaded. Free hand drawn, photocopies and faxed diagrams will not be accepted by APS. All diagrams must include the project name and street address and include diagram revision numbers and dates.

Upon request, APS will provide Customer with a set of sample diagrams that indicate the general layout, the level of detail, the necessary information, and the required quality of the Customer diagrams for a typical inverter-based system.

Standard industry accepted electrical symbols shall be used on the diagrams. The required size for all drawings is 8.5”x11” or 11”x17”.

(a) Electrical One-Line Diagram:
Diagram(s) must show all generation sources (eg. photovoltaic panels, wind generator, etc.) and any associated DC electrical components, inverter(s), any combiner panels, metering, Utility Disconnect Switch, as well as the electric service entrance. In addition, the utility meter, connection points of facility loads, and all other associated electrical components must be shown. The electrical ratings of the wire and equipment including all backfed breakers or fuses and any subpanels, must be indicated.

(b) Electrical Three-Line Diagram:
Diagram(s) must show detailed phase wiring of all electrical equipment as specified in the Electrical One-Line Diagram, as well as all neutral, equipment ground and grounding electrode equipment (G.E.C.) conductors and connections.

(c) Plant Location Diagram:
Diagram must show major cross streets and location of facility. Include a North arrow.

(d) Site Plan:
Diagram must show the arrangement of the major GF equipment, including the electric service entrance section and utility meter, location of the inverter(s), Utility Disconnect Switch and any lock-boxes, etc. Include building structure location and any walls, fences and gates etc, to clearly indicate unobstructed access to APS equipment, any required special metering and the Utility Disconnect Switch. Include a North arrow.
INTERCONNECTION APPLICATION FOR ROTATING MACHINERY

CUSTOMER AND SITE INFORMATION

APS Customer Account Holders Name(s)____________________________________

Company Name (if applicable)___

Generating Facility Address___

Customer Mailing Address__

Telephone (day) _________________ E-mail _________________________________

APS Account Number ______________ APS Meter No ________________________

GENERATOR INFORMATION

A. Manufacturer ___________________ Model No.___________________________

B. Generator Type (Synchronous, Induction)_________________________________

C. Generator Nameplate Rating

Voltage____________________ Single or Three Phase_______________________
Power Factor ________________ Continuous Power kW_____________________
No. of Units ________________ Total System kW___________________________

D. Generator Electrical Characteristics (on the machine base, for above 50 kW)

Synchronous Reactance (Xd) ___
Transient Reactance (X'd) ___
Subtransient Reactance (X"d) ___
Stator Resistance (Ra) __
Zero Sequence Reactance (X0) __
Zero Sequence Resistance (R0) ___
Negative Sequence Reactance (X2) _______________________________________
Negative Sequence Resistance (R2) _______________________________________
INTERCONNECTION APPLICATION FOR ROTATING MACHINERY
(cont’d)

E. Generator Neutral Grounding (for above 300 kW)

Specify whether the generator neutral will be solidly grounded or grounded through a neutral resistor: __

If grounded through a neutral resistor, specify the resistance: _________________

PRIME MOVER

A. Manufacturer ______________________ Model No. _________________________

B. Fuel Source (Natural Gas, Landfill Gas, etc.) _______________________________

C. Is useful heat recovered from the prime mover (Yes or No) ____________________

D. Is the installation a Qualifying Facility (QF) (Yes or No) _______________________

INTERFACE EQUIPMENT AND PROTECTIVE RELAY INFORMATION
(Complete all applicable items; attach a separate sheet if necessary).

A. Synchronizer for Synchronous Generator:

 Manufacturer _____________________ Model No. __________________________

 Automatic or Manual Synchronizer_______________________________________

B. Manufacturer’s name and model number for each protective device
 (refer to section 8)

C. Proposed settings (trip setpoint and time) for each protective device (refer to section 8)

INTERCONNECTION APPLICATION FOR ROTATING MACHINERY
(cont’d)

PROPOSED OPERATION

A. (1) Specify the mode in which the Generator will operate:

_____ Continuous Parallel

_____ Smooth Parallel Transition (normally 5-15 seconds)

_____ Momentary Parallel Transition (normally <10 cycles)

(2) If the Generator will operate in continuous parallel with the utility, specify which of the following options you desire:

_____ Net metering in accordance with the EPR-6 rate (Q.F.)

_____ Partial Requirements Service under the SC-S rate (Solar, > 100 kW)

_____ Partial Requirements Service under the E-56 rate (Non Solar, > 100 kW)

_____ Sell excess energy to APS in accordance with the EPR-2 rate (≤ 100 kW)

_____ None of the above. Specify: __

B. Provide the anticipated project in-service date: ____________________________

C. Is an electrical permit and/or inspection required by the Authority Having Jurisdiction?

(Yes or No) ________________ If no, explain:____________________________________

D. Is access by APS personnel to the Utility Disconnect Switch, electric service entrance, and any utility-required generation metering in any way restricted or impeded (fences, locks, gates, walls, animals, etc.)?

(Yes or No)__________ If yes, explain:__
INTERCONNECTION APPLICATION FOR STATIC INVERTERS (cont’d)

SYSTEM OWNER

If the GF is owned by a person or entity other than the Customer, complete the following:

Name: __________________________ Company: __________________________

Mailing Address: __

Phone: ______________________ E-mail: _______________________________

SYSTEM OPERATOR

If the GF is to be operated by a person or entity other than the Customer, complete the following:

Name: __________________________ Company: __________________________

Mailing Address: __

Phone: ______________________ E-mail: _______________________________

INTERCONNECTION PROCESS CONTACT INFORMATION

If the primary contact for interconnection process is to be coordinated by someone other than the Customer, complete the following:

Name: __________________________ Company: __________________________

Mailing Address: __

Phone: ______________________ E-mail: _______________________________

CUSTOMER CERTIFICATION

This Application is complete and accurate to the best of my knowledge, and I hereby grant APS permission to coordinate the interconnection process with the person or entity specified above, if completed.

APS Customer Name:__

Signature: __Date: ____________
SUPPLEMENTARY INFORMATION

Diagrams and information specified below are to be specifically prepared for APS’ use, and to be submitted for all rotating machinery based projects. APS will not accept any copyrighted drawings. These must be site specific regarding the information requested below, without extraneous information. All diagrams are to be professionally drawn, using only black print on white paper, and our not to be color or shaded. Free hand drawn, photocopies and faxed diagrams will not be accepted by APS. All diagrams must include the project name and street address as well as diagram revision numbers and dates.

Standard industry accepted electrical symbols shall be used on the diagrams. The required size for all drawings is 8.5”x11” or 11”x17”.

(a) Electrical One-Line Diagram:
Diagram(s) must show generators and all major associated electrical components including protective relaying, any interlocks and control functions, as well as the electric service entrance, utility meter, connection points of facility loads, any transformers, generator metering, and Utility Disconnect Switch. The electrical ratings of the equipment shall be shown.

(b) AC & DC Control Schematics:
Diagram(s) must show the detailed phase wiring of all electrical equipment as specified above for the Electrical One-Line Diagram, including protective relaying, associated instrument transformers, and control functions. Include control power source and all associated AC and DC connections.

(c) Plant Location Diagram:
Diagram must show major cross streets and location of facility. Include a North arrow.

(d) Site Plan:
Diagram must show the arrangement of the major GF equipment, including the electric service entrance section and utility meter, location of generator(s), interface equipment, Utility Disconnect Switch and location of any lock-boxes, etc. Include building structure location and any walls, fences and gates etc, to clearly indicate unobstructed access to APS equipment and Disconnect Switch. Include a North arrow.

(e) Relay Setting Sheet(s):
Setting sheet(s) for the APS-required minimum protective relay functions must show the trip setpoints and times. Settings may be provided after the initial APS review, once the final system configuration has been determined.