January 31, 2014
Docket Control
Arizona Corporation Commission
1200 West Washington
Phoenix, Arizona 85007
RE: Arizona Public Service Company Ten-Year Transmission System Plan Docket No. E-00000D-13-0002

In compliance with A.R.S. § 40-360.02, enclosed please find Arizona Public Service Company's ("APS") 2014-2023 Ten-Year Transmission System Plan for major transmission facilities (Attachment A), which includes the internal planning criteria and system ratings as required by Arizona Corporation Commission, Decision No. 63876 (July 25, 2001) and the Renewable Transmission Action Plan (Attachment B).

IT IS FURTHER ORDERED that Transmission Owners are required to file, with their Ten-Year Plans, internal planning criteria and systems rating with limiting elements identified. (Decision No. 63876, p.3).

The 2014-2023 Ten-Year Plan describes planned transmission lines of 115 kV or higher that APS may construct over the next 10 years. This Ten-Year Plan includes approximately 191 miles of new 500 kV transmission lines, 78 miles of new 230 kV transmission lines, 6 miles of new 115 kV transmission lines, and 7 bulk transformers. The APS investment needed to construct these projects is currently estimated to be approximately $\$ 496$ million. These new transmission projects, coupled with additional distribution and sub-transmission investments, will support reliable power delivery in APS's service area, Arizona, and in the western United States.

If you have any questions regarding this information, please contact Greg Bernosky at (602)250-4849.

Sincerely,

Lisa Malagon

LM/cd

cc: Janice Alward
 Steve Ola
 John Foreman
 Brian Bozzo
 Terri Ford
 Patrick Quinn

Attachment A

ARIZONA PUBLIC SERVICE COMPANY 2014-2023
 TEN-YEAR TRANSMISSION SYSTEM PLAN

Prepared for the

Arizona Corporation Commission

January 2014

ARIZONA PUBLIC SERVICE COMPANY 2014-2023
 TEN-YEAR TRANSMISSION SYSTEM PLAN

TABLE OF CONTENTS

GENERAL INFORMATION 1
Changes from 2013-2022 Ten-Year Plan 5
New Projects in the 2014-2023 Ten-Year Plan 7
Conceptual Projects in the Feasibility Planning Phase 7
PLANNED TRANSMISSION MAPS
Arizona EHV and Outer Divisions 8
Phoenix Metropolitan Area 9
Yuma Area 10
PROJECT DESCRIPTIONS
Hassayampa - North Gila 500kV \#2 Line 11
Palm Valley - TS2 - Trilby Wash 230kV Line. 12
Delaney - Palo Verde 500kV Line 13
Delaney - Sun Valley 500kV Line. 14
Sun Valley - Trilby Wash 230kV Line 15
Bagdad 115kV Relocation Project 16
Mazatzal 345/69kV Substation 17
North Gila - Orchard 230kV Line 18
Morgan - Sun Valley 500kV Line 19
Scatter Wash 230/69kV Substation. 20
Morgan - Sun Valley 230kV Line 21
Avery 230/69kV Substation 22
Pinal Central - Sundance 230kV Line 23
Jojoba 230/69kV Substation 24
Orchard - Yucca 230kV Line 25
Sun Valley - TS10 -TS11 230kV Line 26
Buckeye - TS11 - Sun Valley 230kV Line 27
El Sol - Westwing 230kV Line 28
Palo Verde - Saguaro 500kV Line 29

ARIZONA PUBLIC SERVICE COMPANY 2014-2023
 TEN-YEAR TRANSMISSION SYSTEM PLAN

GENERAL INFORMATION

Pursuant to A.R.S. § 40-360.02, Arizona Public Service Company ("APS") submits its 2014-2023 Ten-Year Transmission System Plan ("Ten-Year Plan"). Additionally, pursuant to Arizona Corporation Commission ("Commission") Decision No. 63876 (July 25, 2001) concerning the First Biennial Transmission Assessment ("BTA"), APS is including with this filing its Transmission Planning Process and Guidelines and maps showing system ratings on APS’s transmission system. The Transmission Planning Process and Guidelines outline generally APS's internal planning for its high voltage and extra-high voltage ("EHV") transmission system, including a discussion of APS's planning methodology, planning assumptions, and its guidelines for system performance. The system ratings maps show continuous and emergency system ratings on APS's EHV system, and on its Metro, Northern, and Southern 230kV systems. APS also includes its Renewable Transmission Action Plan as an attachment to this filing. The Ten-Year Plan is conducted and filed annually with the Commission.

This Ten-Year Plan describes planned transmission lines of 115 kV or higher voltage that APS may construct or participate in over the next ten-year period. Pursuant to A.R.S. § 40360(10), underground facilities are not included. There are approximately 191 miles of 500 kV transmission lines, 78 miles of 230 kV transmission lines, 6 miles of 115 kV transmission lines, and 7 bulk transformers contained in the projects in this Ten-Year Plan. The total investment for the APS projects and the anticipated APS portion of the participation projects as they are
modeled in this filing is estimated to be approximately $\$ 496$ million. ${ }^{1}$ The following table provides an overview of the projects included in this Ten-Year Plan.

Description	Projects in Ten-Year Plan
500kV transmission lines	191 miles
230kV transmission lines	78 miles
115kV transmission lines	6 miles
Bulk Transformers	7
Total Investment	$\$ 496$ million 1

Consistent with the Commission’s Sixth BTA (Decision No. 72031, December 10, 2010) this Ten Year Plan includes information regarding planned transmission reconductor projects and substation transformer replacements. At this time, APS does not have any plans for reconductoring any existing transmission lines. These types of plans often change as they typically are in direct response to load growth or generator interconnections. Therefore, inservice dates for transformer replacement/additions and transmission reconductor projects change to reflect the load changes in the local system. Also, there may be projects added throughout the course of the planning year to accommodate new generator interconnections. The following table shows a list of the planned substation transformer replacements.

[^0]
Bulk Transformer Additions/Replacements

Description	Year
Buckeye 230/69kV Transformer \#2 Replacement	2016
Raceway 230/69kV Transformer \#2	2018
Palm Valley 230/69kV Transformer \#2	2019
Yavapai 230/69kV Transformer \#2	2021
Saguaro 230/69kV Transformer	2021

Some of the facilities reported in prior Ten-Year plan filings have been completed. Others have been canceled or deferred beyond the upcoming ten-year period and are not included in this Ten-Year Plan. The projects that have "To Be Determined" in-service dates are projects that have been identified, but are either still outside of the ten-year planning window or have inservice dates that have not yet been established. They have been included in this filing for informational purposes. A summary of changes from last year's Ten-Year plan is also provided. Additionally, a section is included that briefly describes projects still in the feasibility planning phase.

For convenience of the reader, APS has included system maps showing the electrical connections and in-service dates for all overhead transmission projects planned by APS for Arizona, the Phoenix Metropolitan Area, and the Yuma area. Written descriptions of each proposed transmission project are provided on subsequent pages in the currently expected chronological order of each project. The line routings shown on the system maps and the descriptions of each transmission line are intended to be general, showing electrical connections and not specific routings, and are subject to revision. Specific routing is recommended by the Arizona Power Plant and Transmission Line Siting Committee and ultimately approved by the Commission when issuing a Certificate of Environmental Compatibility and through subsequent
right-of-way acquisition. Pursuant to A.R.S. § 40-360.02(7), this filing also includes technical study results for the projects where construction dates have been identified. The technical study results show project needs that are generally based on either security (contingency performance), adequacy (generator interconnection or increasing transfer capability), or both.

APS participates in numerous regional planning organizations and in the WestConnect organization. Through membership and participation in these organizations, the needs of multiple entities, and the region as a whole, can be identified and studied, which maximizes the effectiveness and use of new projects. Regional organizations in which APS is a member include the Western Electricity Coordinating Council ("WECC"), the Southwest Area Transmission Planning ("SWAT"), and WestConnect. The plans included in this filing are the result of these coordinated planning efforts. APS provides an opportunity for other entities to participate in future planned projects.

Consistent with the Commission's Decision in the Seventh BTA, (Decision No. 73625, December 12, 2012), APS continues to monitor the reliability in Cochise County and, if applicable, will propose any appropriate modifications in future ten-year plans.

The Commission's Seventh BTA, suspended the requirements for performing RMR studies in every BTA and implemented criteria for restarting such studies. Since APS’s last RMR study, there have been no triggering events that would require restarting a RMR study for Phoenix and Yuma load pockets, which are the two major areas in APS's service territory where load cannot be served totally by imports over transmission lines.

The Commission's Sixth BTA ordered that utilities include the effects of distributed generation and energy efficiency programs on future transmission needs. APS's modeled load, located in the Technical Study Report section of this filing, addresses these effects.

The projects identified in this Ten-Year Plan, with their associated in-service dates, will ensure that APS's transmission system meets all applicable reliability criteria. Changes in
regulatory requirements, regulatory approvals, or underlying assumptions such as load forecasts, generation or transmission expansions, economic issues, and other utilities' plans, may substantially impact this Ten-Year Plan and could result in changes to anticipated in-service dates or project scopes. Additionally, future federal and regional mandates may impact this TenYear Plan specifically and the transmission planning process in general. This Ten-Year Plan is tentative only and is subject to change without notice at the discretion of APS (A.R.S. § 40360.02(F).

CHANGES FROM 2013-2022 TEN-YEAR PLAN

The following is a list of projects that were removed or changed from APS's January 2013 Ten-Year Plan filing, along with a brief description of why the change was made.

- The Youngs Canyon $345 / 69 \mathrm{kV}$ project is not included in the 2014-2023 Ten-Year Plan because the project has been placed into service.
- The Black Peak 161/69kV transformer replacement project is not included in the 20142023 Ten-Year Plan (bulk transformer additions section) because the project has been placed into service.
- The Saguaro (TS12) 230 kV relocation and transformer addition project is not included in the 2014-2023 Ten-Year Plan because the scope of the project has changed. This project has changed to a transformer addition at Saguaro, and has been added to the Bulk Transformer Additions/Replacements table on page 2.
- APS filed an Application pursuant to A.R.S. § 40-252 with the Commission on October 18, 2012 for the North Valley 230kV Transmission Line Project (Case 120 Docket No. L-00000D-02-0120-0000). In its Application, APS requested a ten year extension of the term of the CEC to construct both the Scatter Wash (formerly Misty Willow) and Avery
substations, to cancel that portion of the CEC approving a double-circuit 230 kV transmission line between the Westwing, Raceway and Pinnacle Peak substations, and to change the location of the Scatter Wash substation. On April 10, 2013 in Decision No. 73824, the Commission approved APS's Application. As a result, the only remaining facilities to be built are the Scatter Wash and Avery 230kV substations. The term to construct these facilities was extended ten years to June 18, 2023.
- The Raceway-Westwing 230kV line has been cancelled and removed from the 20142023 Ten-Year Plan due to the amended CEC application described above (Decision No. 73824, April 10, 2013).
- APS filed an Application pursuant to A.R.S. § 40-252 with the Commission on April 2, 2013 for the West Valley South Transmission Line Project (Case 122 Docket No. L-00000D-03-0122-00000). In its Application, APS requested a five year extension of the term of the CEC (to December 23, 2018) for the first circuit of the 230 kV transmission line and for ten years (to December 23, 2028) for the second circuit and all remaining facilities. On June 27, 2013 in Decision No. 73937, the Commission approved APS’s Application.
- The Palo Verde Hub - North Gila $500 \mathrm{kV} \# 2$ Line is now referred to as Hassayampa North Gila 500 kV \#2 Line to more accurately reflect the Point of Origin.

In-Service Date Changes

Project Name	Previous In-Service Date	New In-Service Date
Bagdad 115kV Line Relocation	2014	2017
North Gila - Orchard 230 kV Line	2016	2018

The in-service dates shown in this table are based on factors such as load projections, scope changes, etc., not potential interconnections. New generation interconnections may accelerate the in-service date.

NEW PROJECTS IN THE 2014-2023 TEN-YEAR PLAN

There are no new projects planned within the 2014-2023 Ten-Year Plan that were not in the 2013-2022 Ten-Year Plan.

CONCEPTUAL PROJECTS IN THE FEASIBILITY PLANNING PHASE

Palo Verde/Gila Bend Area To Valley Transmission Capacity

Additional transmission capacity will be studied from the Palo Verde/Gila Bend areas to the Phoenix load center. This transmission capacity is a robust component of the overall APS transmission and resource need. The areas around and west of Palo Verde as well as the Gila Bend area contain some of the best solar resources in the country. APS expects that at least a portion of the future solar resources specified in the APS Integrated Resource Plan (Docket No. E-00000A-11-0113) will be developed in relatively close proximity to these areas and will be supported by this transmission capacity. These areas also provide access to existing gas resources and, in the case of Palo Verde, potential new gas resources and market purchases.

APS EHV \& OUTER DIVISION 115/230 KV TRANSMISSION PLANS 2014-2023

PHOENIX METROPOLITAN AREA TRANSMISSION PLANS 2014-2023

Yuma Area Transmission Plans 2014-2023

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2015}$

Line Designation

Project Sponsor

Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Hassayampa - North Gila 500kV \#2 Line
Arizona Public Service Company
None

500 kV AC
2200 A
Hassayampa switchyard

North Gila substation; Sec. 11, T8S, R22W
Approximately 110 miles
This line will generally follow the route of the existing Hassayampa-Hoodoo Wash-North Gila 500kV \#1 line.
This project will increase the import capability for the Yuma area and export/scheduling capability from the Palo Verde area to provide access to both solar and gas resources. This project will also allow the system to accommodate generation interconnection requests.

Date
(a) Construction Start 2013
(b) Estimated In Service

2015
Permitting / Siting Status Certificate of Environmental Compatibility issued 1/23/08 (Case No. 135, Decision No. 70127, Palo Verde Hub to North Gila 500kV Transmission Line project). An amendment to the original CEC was granted on $12 / 3 / 13$, Decision No. 74206, to relocate a 1,500 foot segment of the approved corridor east of the North Gila substation Construction activities began in mid-2013. Notethe Hassayampa line was previously referred to as the Palo Verde Hub to North Gila.

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2015}$

Line Designation
Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Date
(a) Construction Start
(b) Estimated In Service
Permitting / Siting Status

Palm Valley - TS2 - Trilby Wash 230kV Line
Arizona Public Service Company
None

230 kV AC
3000 A
Palm Valley substation; Sec. 24, T2N, R2W

TS2 substation to be in-service by TBD; Sec. 25, T3N, R2W
Trilby Wash substation to be in-service by 2015; Sec. 20, T4N, R2W
Approximately 12 miles
North from the Palm Valley substation, generally following the Loop 303 to Cactus Road, west on Cactus Road to approximately 191st Avenue, and then north on 191st Avenue to the Trilby Wash substation.

This project will serve the need for electric energy in the western Phoenix Metropolitan area and additional import capability into the greater Phoenix Metropolitan area. The proposed second 230 kV source for Trilby Wash provides improved system reliability and continuity of service for communities in the area; such as El Mirage, Surprise, Youngtown, Goodyear, and Buckeye. The first circuit is scheduled to be in-service for the summer of 2015; the in-service date for the second circuit will be evaluated in future planning studies.

2014
2015
The Palm Valley-TS2 230kV line portion was sited as part of the West Valley South 230kV Transmission Line project and a Certificate of Environmental Compatibility was issued 12/22/03 (Case No. 122, Decision No. 66646). As described above, an amendment to the original CEC was granted on June 27, 2013, Decision No. 73937, to extend the term of the Certificate five years for the first circuit of the Project to December 23, 2018 and extend the term for the second circuit and other facilities ten years to December 23, 2018. The Trilby Wash-TS2 230kV line portion was sited as part of the West Valley North 230kV Transmission Line project and a Certificate of Environmental Compatibility was issued 5/5/05 (Case No. 127, Decision No. 67828).

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

	$\underline{2016}{ }^{\text {2 }}$
Line Designation	Delaney - Palo Verde 500kV Line
Project Sponsor	Arizona Public Service Company
Other Participants	CAWCD
Size	
(a) Voltage Class	500 kV AC
(b) Facility Rating	To be determined
(c) Point of Origin	Palo Verde Switchyard
(d) Intermediate Points of Interconnection	
(e) Point of Termination	Delaney Switchyard; Sec. 25, T2N, R8W
(f) Length	Approximately 15 miles
Routing	Generally leaving the Palo Verde Hub vicinity following the Palo Verde-Colorado River-Devers \#1 and the Hassayampa-Harquahala 500 kV lines to the Delaney Switchyard site in Sec. 25, T2N, R8W.
Purpose	This project is anticipated to interconnect generation projects at the Delaney switchyard. This line is also one section of a new 500 kV path from Palo Verde around the western and northern edges of the Phoenix area and terminating at Pinnacle Peak. This is anticipated to be a joint participation project. APS will serve as the project manager.

Date

(a) Construction Start 2011
(b) Estimated In Service 2016

Permitting / Siting Status Certificate of Environmental Compatibility issued 8/17/05 (Case No. 128, Decision No. 68063, Palo Verde Hub to TS5 500kV Transmission project). APS, as project manager, holds the CEC.

[^1]
Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2016}$

Line Designation

Project Sponsor

Other Participants

Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points
of Interconnection
(e) Point of Termination
(f) Length

Routing

Delaney - Sun Valley 500kV Line
Arizona Public Service Company
CAWCD

500 kV AC
To be determined
Delaney Switchyard; Sec. 25, T2N, R8W

Sun Valley substation to be in-service by 2016; Sec. 29, T4N, R4W
Approximately 28 miles
Generally follows the Palo Verde-Colorado River-Devers \#1 line until crossing the CAP canal. Then easterly, generally following the north side of the CAP canal to the new Sun Valley substation.

Purpose
This project will serve projected need for electric energy in the area immediately north and west of the Phoenix Metropolitan area. The project will increase the system reliability by providing a new transmission source to help serve the areas in the western portions of the Phoenix Metropolitan area. This is a joint participation project with APS as the project manager. It will also increase the import capability to the Phoenix Metropolitan area as well as increase the export/scheduling capability from the Palo Verde area to provide access to both solar and gas resources.

Date
(a) Construction Start 2014
(b) Estimated In Service

2016
Permitting / Siting Status Certificate of Environmental Compatibility issued 8/17/05 (Case No. 128, Decision No. 68063, Palo Verde Hub to TS5 500kV Transmission project). APS, as project manager, holds the CEC.

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2016}$

Line Designation
Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose
(e) Point of Termination

Sun Valley - Trilby Wash 230kV Line
Arizona Public Service Company
None

230 kV AC
3000 A
Sun Valley substation to be in-service by 2016; Sec. 29, T4N, R4W

Trilby Wash substation to be in-service by 2015; Sec. 20, T4N, R2W

Approximately 15 miles
East from the Sun Valley substation along the CAP canal to approximately 243rd Ave., south to the existing 500 kV transmission line corridor, and then east along the corridor to the Trilby Wash substation.

This project is required to serve the need for electric energy in the western Phoenix Metropolitan area. Also, the project will provide more capability to import power into the Phoenix Metropolitan area along with improved reliability and continuity of service for communities in the area including El Mirage, Surprise, Youngtown, Buckeye, and unincorporated Maricopa county. The first circuit is scheduled to be in-service for the summer of 2016 and the in-service date for the second circuit will be evaluated in future planning studies.

Date

(a) Construction Start 2014
(b) Estimated In Service

Permitting / Siting Status
Certificate of Environmental Compatibility issued 5/5/05 (Case No. 127, Decision No. 67828, West Valley North 230kV Transmission Line project).

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2017}$

Line Designation
Project Sponsor
Other Participants

Size

(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Bagdad 115kV Relocation Project
Arizona Public Service Company
None

115 kV AC
430 A
Bagdad Capacitor switchyard; Sec. 10, T14N, R9W

Bagdad Mine substation; Sec. 31, T15N, R9W
Approximately 5.5 miles
Beginning at the existing APS capacitor switchyard and extending in a southwesterly direction for approximately 1.5 miles, then turning in a northwesterly direction approximately 4 miles to the existing Bagdad Mine substation. The project primarily crosses federal BLM lands, private lands (owned by the mine) and a short segment on Arizona State Trust Lands.

Freeport McMoRan Inc. ("FMI") has future plans to expand the mine in the location of the existing 115 kV transmission line. They requested that APS move the line in a southerly direction beyond the limits of the planned expansion.

Date
(a) Construction Start 2016
(b) Estimated In Service

Permitting / Siting Status

2017
Certificate of Environmental Compatibility issued on 7/16/09 (Case No. 143, Decision No. 71217, Bagdad 115kV Relocation Project). An amendment to the original CEC was granted on 11/21/12, Decision No. 73586, expanding a portion of the project corridor on FMI property to accommodate rerouting this line.

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2017}$

Line Designation
Project Sponsor
Other Participants

Size

(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Mazatzal substation to be in-service by 2017; Sec. 3, T8N, R10E
Less than 1 mile
The Mazatzal 345/69kV substation will be constructed adjacent to the Cholla-Pinnacle Peak 345kV line corridor.

This project is needed to provide the electric source and support to the sub-transmission system in the area of Payson and the surrounding communities. Additionally, improved reliability and continuity of service will result for the communities in the Payson area.

Date
(a) Construction Start 2015
(b) Estimated In Service 2017

Permitting / Siting Status Certificate of Environmental Compatibility issued on 5/4/11 (Case No. 160, Decision No. 72302, Mazatzal Substation and $345 k V$ Interconnection Project).

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2018}$

Line Designation
Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

North Gila - Orchard 230kV Line
Arizona Public Service Company
None

230 kV AC
3000 A
North Gila substation; Sec. 11, T8S, R22W

Orchard 230kV substation to be in-service by 2018; Sec. 20, T9S, R22W

Approximately 13 miles
In general the line will proceed south from the North Gila substation until County $61 / 2$ Street, where it will head east for approximately 1 mile. Then following the existing Western Area Power Administration utility right-of-way south to County $911 / 2$ Street, where it will proceed east for approximately 0.3 mile before heading south on Avenue 10E. Then the route will proceed southwest adjacent to the Union Pacific Railroad and then adjacent to the A Canal until it turns south along the Yuma Area Service Highway alignment. The route then proceeds west along the County $131 / 2$ Street alignment to Avenue $51 / 2 E$, where it will turn south to the Orchard termination point.

This project serves the need for electric energy, improved reliability, and continuity of service for the greater Yuma area. This project is expected to be double circuit capable with one circuit in service in 2018 and the second circuit in service at a date to be determined.

Date

(a) Construction Start 2016
(b) Estimated In Service

Permitting / Siting Status

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2018}$

Line Designation

Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Morgan - Sun Valley 500kV Line
Arizona Public Service Company
CAWCD

500 kV AC
To be determined
Sun Valley substation to be in-service in 2016; Sec. 29, T4N, R4W

Approximately 38 miles
Generally the line will head north-northeast out of the Sun Valley substation and then east to the Morgan substation.

This project will serve the electric energy needs in the northern Phoenix Metropolitan area. The project will also increase the reliability of the EHV system by completing a 500 kV loop that connects the Palo Verde Transmission system, the Southern Navajo Transmission system, and the Southern Four Corners system. Additionally, the project will increase reliability by providing a second 500 kV source for the Sun Valley substation and providing support for multiple Category C and D transmission contingencies. It will also increase the import capability to the Phoenix Metropolitan area, as well as increase the export/scheduling capability from the Palo Verde Hub area, which includes both solar and gas resources. This project is anticipated to be 500/230kV double-circuit capable.

Date

(a) Construction Start 2015
(b) Estimated In Service

2018
Permitting / Siting Status
Certificate of Environmental Compatibility issued on 3/17/09 (Case No. 138, Decision No. 70850, TS5-TS9 500/230kV Project). A Record of Decision was signed on January $16^{\text {th }}, 2014$ approving the issuance of a right-of-way for the portion of the Project on land managed by the Bureau of Land Management. A corresponding amendment to the Bradshaw-Harquahala Resource Management Plan was also approved.

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

$\underline{2021}$

Line Designation
Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Scatter Wash 230/69kV Substation
Arizona Public Service Company
None

230kV AC
188 MVA
Pinnacle Peak-Raceway 230kV line; Sec. 8, T4N, R3E

Scatter Wash substation; Sec. 8, T4N, R3E
Less than 1 mile
The Scatter Wash substation will be located adjacent to the Pinnacle PeakRaceway 230kV line.

This project is needed to provide electric energy in the northem portions of the Phoenix Metropolitan area as well as increase the reliability and continuity of service for these areas.

Date

(a) Construction Start 2020
(b) Estimated In Service 2021

Permitting / Siting Status Certificate of Environmental Compatibility issued on 6/18/03 (Case No. 120, Decision No. 65997, North Valley Project. The Scatter Wash Substation was referred to as TS6 in Case 120). As described above, APS filed an Application pursuant to A.R.S. § 40-252 to extend the term of this CEC and amend it to conform with subsequent decisions and circumstances. On April 10, 2013,inDecision No. 73824, the Commission approved APS's application to extend the term by 10 years to June 18, 2023 and to relocate the Scatter Wash substation to the north side of the approved corridor.

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

2024-2026

Line Designation
Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Morgan - Sun Valley 230kV Line
Arizona Public Service Company
None

230 kV AC
To be determined
Sun Valley substation to be in-service by 2016; Sec. 29, T4N, R4W

To be determined

Morgan substation; Sec. 33, T6N, R1E
Approximately 38 miles
This line will be co-located with the Morgan-Sun Valley 500kV line, which generally heads north-northeast out of the Sun Valley substation and then east to the Morgan substation.
This project is needed to provide a transmission source to serve future load that emerges in the currently undeveloped areas south and west of Lake Pleasant. This line will be co-located with the Morgan-Sun Valley 500kV line.

Date

(a) Construction Start

2024-2026
(b) Estimated In Service

Permitting / Siting Status

2024-2026
Certificate of Environmental Compatibility issued on 3/17/09 (Case No. 138, Decision No. 70850, TS5-TS9 500/230kV Project). A Record of Decision was signed on January 16 ${ }^{\text {th }}, 2014$ approving the issuance of a right-of-way for the portion of the Project on land managed by the Bureau of Land Management. A corresponding amendment to the Bradshaw-Harquahala Resource Management Plan was also approved.

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation

Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Avery 230/69kV Substation
Arizona Public Service Company
None

230kV AC
188 MVA
Pinnacle Peak-Raceway 230kV line; Sec. 8, T4N, R3E

Avery substation; Sec. 15, T5N, R2E
Less than 1 mile
The Avery substation will be constructed adjacent to the Pinnacle PeakRaceway 230 kV line at approximately the Dove Valley Rd. and $39^{\text {th }}$ Ave. alignments.

This project is needed to provide electric energy in the northem portions of the Phoenix Metropolitan area as well as increase the reliability and continuity of service for these areas. The need date for this substation is continuously evaluated as the load growth in the area is monitored.

Date

(a) Construction Start To be determined
(b) Estimated In Service To be determined

Permitting / Siting Status Certificate of Environmental Compatibility issued on 6/18/03 (Case No. 120, Decision No. 65997, North Valley Project). As described above, APS filed an Application pursuant to A.R.S. §40-252 to extend the term of this CEC and amend it to conform with subsequent decisions and circumstances. On April 10, 2013, Decision No. 73824, the Commission approved APS's application to extend the term by 10 years to June 18, 2023.

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation

Project Sponsor
Other Participants
Size
(a) Voltage Class

230 kV AC
(b) Facility Rating
(c) Point of Origin

Sundance substation; Sec. 2, T6S, R7E
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Date

Pinal Central substation to be in-service by 2014; Sec. 30, T6S, R8E Approximately 6 miles

The project will originate at a new substation on the Sundance property, proceeding west and then south along Curry Road to the half-section between State Route 287 and Earley Road. The final west to east alignment connecting into the Pinal Central Substation will be located within an ACC-approved corridor and is subject to further design and right-of-way acquisition analysis.
This project will serve increasing loads in Pinal County, and throughout the APS system, and will improve reliability and continuity of service for the communities in the area. Also, the project will increase the reliability of Sundance by providing a transmission line in a separate corridor than the existing lines that exit the plant. The project will be constructed as a 230 kV double-circuit capable line, but initially operated as a singlecircuit. The in-service date for the second circuit will be evaluated in future planning studies.
(a) Construction Start To be determined
(a) Construction Start
(b) Estimated In Service
Permitting / Siting Status
(a) Construction Start
(b) Estimated In Service
Permitting / Siting Status

To be determined

Certificate of Environmental Compatibility issued 4/29/08 (Case No. 136, Decision No. 70325, Sundance to Pinal South 230kV Transmission Line project). Note - the Pinal South substation is now referred to as Pinal Central.

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation	Jojoba 230/69kV Substation
$\underline{\text { Project Sponsor }}$	Arizona Public Service Company
$\underline{\text { Other Participants }}$	None

Size

(a) Voltage Class 230 kV AC
(b) Facility Rating 188 MVA
(c) Point of Origin

Liberty (TS4)-Panda 230kV line; Sec. 25, T2S, R4W
(d) Intermediate Points
of Interconnection
(e) Point of Termination

Jojoba 230/69 substation with an in-service TBD; Sec. 25, T2S, R4W
(f) Length

Routing
Less than 1 mile
The Jojoba 230/69kV substation will be constructed adjacent to the Liberty (TS4)-Panda 230kV line.
Purpose
This project will provide the electrical source and support to the sub-transmission system to serve the need for electric energy for the communities including Buckeye, Goodyear, and Gila Bend. The project will also increase the reliability and continuity of service for those areas.

Date

(a) Construction Start To be determined
(b) Estimated In Service

To be determined
Permitting / Siting Status Certificate of Environmental Compatibility issued 10/16/00 (Case No. 102, Decision No. 62960, Gila River Transmission Project) for the Gila River Transmission Project which included the interconnection of the 230 kV substation.

Arizona Public Service Company 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation
Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points
of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Orchard - Yucca 230kV Line
Arizona Public Service Company
None

230 kV AC
To be determined
Yucca substation; Sec. 36, T7S, R24W

Orchard 230kV substation to be in-service by 2018; Sec. 20, T9S, R22W
Approximately 19 miles
The line will proceed west from the Orchard substation along County $14^{\text {th }}$ Street to the A Canal. Then the route will proceed southwest along the A Canal to Avenue 4 E , where it will continue west along County $14 \frac{1}{2}$ Street to US 95 . The line will proceed north along US 95 to the County $131 / 22$ Street alignment and proceed west along County $131 / 2$ and County $13^{\text {th }}$ Street. At Avenue F the line will proceed north to Levee Road, where it will proceed north east until the $8^{\text {th }}$ Street alignment. The line will proceed east along $8^{\text {th }}$ Street until Calle Agua Salada Road, where it will proceed north to the Yucca Power Plant.
This double circuit 230kV project will serve the need for electric energy, improve reliability, and continuity of service for the greater Yuma area. Additionally, this project will provide a second electrical source to the future Orchard substation. The ability to transmit electric energy generated by renewable resources in the region may be an additional benefit subject to study by APS in regional planning forums.

Date
(a) Construction Start To be determined
(b) Estimated In Service

Permitting / Siting Status Certificate of Environmental Compatibility issued 2/2/12 (Case No. 163, Decision No. 72801, North Gila to TS8 to Yucca 230 kV Transmission Line project). Note - TS8 to Yucca 230 kV Line is now referred to as Orchard - Yucca 230 KV Line.

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation

Project Sponsor

Other Participants

Size

(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing
Purpose

Sun Valley - TS10 -TS11 230kV Line
Arizona Public Service Company
None

230 kV AC
To be determined
Sun Valley substation to be in-service by 2016; Sec. 29, T4N, R4W

A future TS10 substation; location to be determined

A future TS11 substation; location to be determined
To be determined
The routing for this line has not yet been determined.
This project is needed to provide a transmission source to serve future load that emerges in the currently undeveloped areas northwest of the White Tank Mountains. This line is anticipated to be a 230 kV line originating from the Sun Valley substation, with the future TS10 230/69kV substation to be interconnected into the 230 kV line.

Date

(a) Construction Start To be determined
(b) Estimated In Service

Permitting / Siting Status

To be determined
An application for a Certificate of Environmental Compatibility has not yet been filed.

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation
Project Sponsor
Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing
Purpose

Buckeye - TS11 - Sun Valley 230kV Line
Arizona Public Service Company
None

230 kV AC
To be determined
Sun Valley substation to be in-service by 2016; Sec. 29, T4N, R4W

A future TS11 substation; location to be determined

Buckeye substation; Sec. 7, T1N, R3W
To be determined
The routing for this line has not yet been determined.
This project will serve the need for electric energy in the largely undeveloped areas west of the White Tank Mountains. This project will provide the first portion of the transmission infrastructure in this largely undeveloped area and will provide a transmission connection between the northern and southern transmission sources that will serve the area. Improved reliability and continuity of service will result for this portion of Maricopa County. It is anticipated that this project will be constructed with double-circuit capability, but initially operated as a single circuit. The in-service date and location of the TS11 230/69kV substation will be determined in future planning studies based upon the development of the area.

Date
(a) Construction Start To be determined
(b) Estimated In Service

Permitting / Siting Status
An application for a Certificate of Environmental Compatibility has not yet been filed.

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation

Project Sponsor

Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose This project will increase system capacity to serve the Phoenix Metropolitan area, while maintaining system reliability and integrity for delivery of bulk power from Westwing south into the APS Phoenix Metropolitan area 230 kV transmission system.

Date

(a) Construction Start To be determined
(b) Estimated In Service

Permitting / Siting Status Certificate of Environmental Compatibility issued 7/26/73 (Case No. 9, Docket No. U-1345). Note that this Certificate authorizes two double-circuit lines. Construction of the first double-circuit line was completed in March 1975. Construction of the second line, planned to be built with double-circuit capability, but initially operated with a single circuit, is described above.

Arizona Public Service Company
 2014-2023
 Ten-Year Plan
 Planned Transmission Description

To Be Determined

Line Designation

Project Sponsor

Other Participants
Size
(a) Voltage Class
(b) Facility Rating
(c) Point of Origin
(d) Intermediate Points of Interconnection
(e) Point of Termination
(f) Length

Routing

Purpose

Palo Verde - Saguaro 500kV Line
CATS Sub-Regional Planning Group Participants
To be determined

500 kV AC
To be determined
Palo Verde switchyard; Sec. 34, T1N, R6W

Saguaro substation; Sec. 14, T10S, R10E
Approximately 130 miles
Generally south and east from the Palo Verde area to a point near Gillespie Dam, then generally easterly until the point at which the Palo Verde-Kyrene 500kV line diverges to the north and east. The corridor then continues generally south and east again, adjacent to a gas line corridor, until converging with the Tucson Electric Power Company's Westwing-Pinal West-South 345kV line. The corridor follows the 345 kV line until a point due west of the Saguaro Generating Station. The corridor then follows a lower voltage line into the 500 kV yard just south and east of the Saguaro Generating Station.
The line will increase the adequacy of the existing EHV transmission system and increase power delivery throughout the state.

Date
(a) Construction Start To be determined
(b) Estimated In Service

To be determined
Certificate of Environmental Compatibility issued 1/23/76 (Case No. 24, Decision No. 46802).

TRANSMISSION PLANNING PROCESS AND GUIDELINES

Table of Contents

I. INTRODUCTION AND PURPOSE 3
II. PLANNING METHODOLOGY 3
A. General 3
B. Transmission Planning Process 4

1. EHV Transmission Planning Process 4
2. 230 kV Transmission Planning Process 5
3. Transmission Facilities Required for Generation/Resource Additions 5
C. Ten Year Transmission System Plans 5
D. Regional Coordinated Planning 5
4. Western Electricy Coordinating Council (WECC)6
5. Technical Task Force and ad-hoc Work Groups 6
6. Sub-Regional Planning Groups 6
7. WestConnect 7
8. Joint Studies 7
E. Generation Schedules 7
F. Load Projections 8
G. Alternative Evaluations 8
9. General 8
10. Power Flow Analyses. 8
11. Transient Stability Studies 9
12. Short Circuit Studies 9
13. Reactive Power Margin Analyses 9
14. Losses Analyses 9
15. Transfer Capability Studies 9
16. Subsynchronous Resonance (SSR) 9
17. FACTS (Flexible AC Transmission System 10
18. Economic Evaluation 10
III. PLANNING ASSUMPTIONS 10
A. General 10
19. Loads 10
20. Generation and Other Resources 10
21. Normal Voltage Levels 10
22. Sources of Databases 11
23. Voltage Control Devices. 11
24. Phase Shifters 11
25. Conductor Sizes 11
26. 69 kV System Modeling 12
27. Substation Transformers 12
28. Switchyard Arrangements 13
29. Series Capacitor Application 14
30. Shunt and Tertiary Reactor Application 14
B. Power Flow Studies 14
31. System Stressing 14
32. Displacement 15
C. Transient Stability Studies 15
33. Fault Simulation 15
34. Margin 15
35. Unit Tripping 15
36. Machine Reactance Representation 15
37. Fault Damping 15
38. Series Capacitor Switching 16
D. Short Circuit Studies 16
39. Generation Representation 16
40. Machine Reactance Representation 16
41. Line Representation 16
42. Transformer Representation 16
43. Series Capacitor Switching 16
E. Reactive Power Margin Studies 17
IV. SYSTEM PERFORMANCE 17
A. Power Flow Studies 17
44. Normal (Base Case Conditions) 17
45. Single and selected Double Contingency Outages 18
B. Transient Stability Studies 20
46. Fault Simulation 20
47. Series Capacitor Switching 20
48. System Stability 20
49. Re-closing 21
50. Short Circuit Studies 21
51. Reactive Power Margin Studies 21

I. INTRODUCTION AND PURPOSE

The Transmission Planning Process and Guidelines (Guidelines) are used by Arizona Public Service Company (APS) to assist in planning its Extra High Voltage (EHV) transmission system (345 kV and 500 kV) and High Voltage transmission system (230 kV and 115 kV). In addition to these Guidelines, APS follows the Western Electricity Coordinating Council's (WECC) System Performance Criteria (TPL-001-WECC-CRT-02) in addition to NERC Table 1.

II. PLANNING METHODOLOGY

A. General

APS uses a deterministic approach for transmission system planning. Under this approach, system performance should meet certain specific criteria under normal conditions (all lines in-service), for any single contingency condition and for selected double contingency conditions as defined under TPL-001-WECC-CRT-02. In general, an adequately planned transmission system will:

- Provide an acceptable level of service that is cost-effective for normal, single and selected double contingency conditions.
- Maintain service to all firm loads for any single or selected double contingency outages; except for radial loads.
- Not result in overloaded equipment or unacceptable voltage conditions for single or selected double contingency outages.
- Not result in cascading for single or selected double contingency outages.
- Provide for the proper balance between the transmission import capability and local generation requirements for an import limited load area.

Although APS uses a deterministic approach for transmission system planning, the WECC reliability planning criteria provides for exceptions based on methodologies provided by the WECC RPEWG. Historical system reliability performance is analyzed on a periodic basis and the results are used in the design of planned facilities.

These planning methodologies, assumptions, and guidelines are used as the basis for the development of future transmission facilities. Additionally,
consideration of potential alternatives to transmission facilities (such as distributed generation or new technologies) is evaluated on a case-specific basis.

As new planning tools and/or information become available revisions or additions to these guidelines will be made as appropriate.

B. Transmission Planning Process

APS' transmission planning process consists of an assessment of the following needs:

- Provide adequate transmission to access designated network resources in-order to reliably and economically serve all network loads.
- Support APS' and other network customers' local transmission and sub-transmission systems.
- Provide for interconnection to new resources.
- Accommodate requests for long-term transmission access.

During this process, consideration is given to load growth patterns, other system changes affected by right-of-way, facilities siting constraints, routing of future transportation corridors, and joint planning with neighboring utilities, governmental entities, and other interested stakeholders (see APS OATT Attachment (E)).

1. EHV Transmission Planning Process

APS' EHV transmission system, which consists of 500 kV and 345 kV , has primarily been developed to provide transmission to bring the output of large base-loaded generators to load centers, such as Phoenix. Need for new EHV facilities may results from any of the bullet items described above. APS' annual planning process includes an assessment of APS' transmission capability to ensure that designated network resources can be accessed to reliably and economically serve all network loads. In addition, Reliability Must-Run (RMR) studies are selectively performed to ensure that proper balance between the transmission import capability and local generation requirements for an import limited load area are maintained.

2. 230 kV Transmission Planning Process

APS’ 230 kV transmission system has primarily been developed to provide transmission to distribute power from the EHV bulk power substations and local generators to the distribution system and loads throughout the load areas.

Planning for the 230 kV system assesses the need for new 230/69 kV substations to support local sub-transmission and distribution system growth and the reliability performance of the existing 230 kV system. This process takes into account the future land use plans that were developed by government agencies, Landis aerial photo maps, master plans that were provided by private developers, and APS' long-range forecasted load densities per square mile for residential, commercial, and industrial loads.
3. Transmission Facilities Required for Generation/Resource Additions

New transmission facilities may also be required in conjunction with generation resources due to (1) a "merchant" request by an Independent Power Producer (IPP) for generator interconnection to the APS system, (2) a "merchant" request for point-to-point transmission service from the generator (receipt point) to the designated delivery point, or (3) designation of new resources or redesignation of existing units to serve APS network load (including removal of an older units’ native load designation). These studies/processes are performed pursuant to the APS Open Access Transmission Tariff (OATT).

C. Ten Year Transmission System Plans

Each year APS uses the planning process described in section B to update the Ten Year Transmission System Plan. The APS Ten Year Transmission System Plan identifies all new transmission facilities, 115 kV and above, and all facility replacements/upgrades required over the next ten years to reliably and economically serve the load.

D. Regional Coordinated Planning

1. Western Electricity Coordinating Council (WECC)

APS is a member of the WECC. The focus of the WECC is promoting the reliability of the interconnected bulk electric system. The WECC provides the means for:

- Developing regional planning and operating criteria.
- Coordinating future plans.
- Establishing new or modifying existing WECC Path Ratings through procedures.
- Compiling regional data banks, including the BCCS, for use by the member systems and the WECC in conducting technical studies.
- Assessing and coordinating operating procedures and solutions to regional problems.
- Establishing an open forum with interested non-project participants to review the plan of service for a project.
- Through the WECC Transmission Expansion Policy Committee, performing economic transmission congestion analysis.
APS works with WECC to adhere to these planning practices.

2. Technical Task Force and ad-hoc Work Groups

Many joint participant projects in the Desert Southwest rely on technical study groups for evaluating issues associated with their respective projects. These evaluations often include studies to address various types of issues associated with transfer capability, interconnections, reliability and security. APS actively participates in many of these groups such as the Western Arizona Transmission System Task Force, Four Corners Technical Task Force and the Eastern Arizona Transmission System Task Force.
3. Sub-Regional Planning Groups

Southwest Area Transmission Planning (SWAT) and other sub-regional planning groups provide a forum for entities within a region, and any other interested parties, to determine and study the needs of the region as a whole. It also provides a forum for specific projects to be exposed to potential partners and allows for joint studies and participation from interested parties.

4. WestConnect

APS and the other WestConnect members executed the WestConnect Project Agreement for Subregional Transmission Planning in May of 2007. This agreement promotes coordination of regional transmission planning for the WestConnect planning area by formalizing a relationship among the WestConnect members and the WestConnect area sub-regional planning groups including SWAT. The agreement provides for resources and funding for the development of a ten year integrated regional transmission plan for the WestConnect planning area. The agreement also ensures that the WestConnect transmission planning process will be coordinated and integrated with other planning processes within the Western Interconnection and with the WECC planning process.
5. Joint Studies

In many instances, transmission projects can serve the needs of several utilities and/or IPPs. To this end, joint study efforts may be undertaken. Such joint study efforts endeavor to develop a plan that will meet the needs and desires of all individual companies involved.

E. Generation Schedules

For planning purposes, economic dispatches of network resources are determined for APS' system peak load in the following manner:

- Determine base generation available and schedule these units at maximum output.
- Determine resources purchased from other utilities, IPPs, or power marketing agencies.
- Determine APS’ spinning reserve requirements.
- Schedule intermediate generation (oil/gas steam units) such that the spinning reserve requirements, in section (c) above, are met.
- Determine the amount of peaking generation (combustion turbine units) required to supply the remaining system peak load.

Phoenix area network resources are dispatched based on economics and any existing import limitations. When possible, spinning reserve will be carried on higher cost Phoenix area network generating units.

Generation output schedules for interconnected utilities and IPPs are based upon consultation with the neighboring utilities and IPPs or as modeled in the latest data in WECC coordinated study cases.

F. Load Projections

APS substation load projections are based on the APS Corporate Load Forecast. Substation load projections for neighboring interconnected utilities or power agencies operating in the WECC area are based on the latest data in WECC coordinated study cases. Heavy summer loads are used for the Ten Year Transmission System Plans.

G. Alternative Evaluations

1. General

In evaluating several alternative plans, comparisons of power flows, transient stability tests, and fault levels are made first. After the alternatives are found that meet the system performance criteria in each of these three areas comparisons may be made of the losses, transfer capability, impact on system operations, and reliability of each of the plans. Finally, the costs of facility additions (capital cost items), costs of losses, and relative costs of transfer capabilities are determined. A brief discussion of each of these considerations follows.

2. Power Flow Analyses

Power flows of base case (all lines in-service) and single contingency conditions are tested and should conform to the system performance criteria set forth in Section IV of these Guidelines. Double or multiple contingencies are also examined in the context of common mode and common corridor outages. Normal system voltages, voltage deviations, and voltage extreme limitations are based upon operating experience resulting in acceptable voltage levels to the customer.

Power flow limits are based upon the thermal ratings and/or sag limitations of conductors or equipment, as applicable.
3. Transient Stability Studies

Stability guidelines are established to maintain system stability for single contingency, three-phase fault conditions. Double or multiple contingencies are also examined in the context of common mode and common corridor outages.
4. Short Circuit Studies

Three-phase and single-phase-to-ground fault studies are performed to ensure the adequacy of system protection equipment to clear and isolate faults.
5. Reactive Power Margin Analyses

Reactive Power Margin analyses are performed when steady-state analyses indicate possible insufficient voltage stability margins. V-Q curve analyses are used to determine post-transient voltage stability.
6. Losses Analyses

A comparison of individual element and overall transmission system losses are made for each alternative plan being studied. The losses computed in the power flow program consist of the $\mathrm{I}^{2} \mathrm{R}$ losses of lines and transformers and the core losses in transformers, where represented.
7. Transfer Capability Studies

In evaluating the relative merits of one or more EHV transmission plans, nonsimultaneous ratings are determined using methodologies consistent with WECC Path Rating Procedures as defined in the WECC Project Coordination and Path Rating Processes manual and NERC Standard MOD-029-1. In addition, simultaneous relationships are identified that can either be mitigated through use of nomograms, operating procedures or other methods.
8. Subsynchronous Resonance (SSR)

SSR phenomenon result from the use of series capacitors in the network where the tuned electrical network exchanges energy with a turbine generator at one or more of the natural frequencies of the mechanical system. SSR countermeasures are applied to prevent damage to machines as a result of transient current or sustained oscillations following a system disturbance. SSR
studies are not used directly in the planning process. SSR countermeasures are determined after the transmission plans are finalized.
9. FACTS (Flexible AC Transmission System

FACTS devices are a recent application of Power Electronics to the transmission system. These devices make it possible to use circuit reactance, voltage magnitude and phase angle as control parameters to redistribute power flows and regulate bus voltages, thereby improving power system operation.

FACTS devices can provide series or shunt compensation. These devices can be used as a controllable voltage source in series or as a controllable current source in shunt mode to improve the power transmission system operations.

FACTS will be evaluated as a means of power flow control and/or to provide damping to dynamic oscillations where a need is identified and it is economically justified. Examples include DSTATCOM for power factor correction and the DVR for dynamic voltage regulation for distribution loads.
10. Economic Evaluation

In general, an economic evaluation of alternative plans consists of a cumulative net present worth or equivalent annual cost comparison of capital costs.

III. PLANNING ASSUMPTIONS

A. General

1. Loads

Loads used for the APS system originate from the latest APS Corporate Load Forecast. In most cases, the corrected power factor of APS loads is 99.5% at 69 kV substations.
2. Generation and Other Resources

Generation dispatch is based on firm power and/or transmission wheeling contracts including network resources designations.
3. Normal Voltage Levels

Nominal EHV design voltages are $500 \mathrm{kV}, 345 \mathrm{kV}, 230 \mathrm{kV}$, and 115 kV . Nominal EHV operating voltages are $535 \mathrm{kV}, 348 \mathrm{kV}$, 239 kV , and 119 kV , with exceptions to certain buses.
4. Sources of Databases

APS currently relies on WECC cases and internal data listings as their depository of EHV and HV system data and models. WECC has chosen to pursue a relational database (i.e. Base Case Coordination System) to maintain data and models for its members in addition to using WECC base cases. APS will begin to use the BCCS as the system becomes available.
5. Voltage Control Devices

Devices which can control voltages are shunt capacitors, shunt reactors, tap-changing-under-load (TCUL) and fixed-tap transformers, static Volt Ampere Reactive (VAR) compensators, and machine VAR capabilities. If future voltage control devices are necessary, these devices will be evaluated based upon economics and the equipment's ability to obtain an adequate voltage profile on the EHV and HV systems. Currently, APS has TCULs on only its 500 kV autotransformers except for a few transformers. Other than operator control, the TCUL transformers do not automatically regulate voltages.

6. Phase Shifters

For pre-disturbances scenarios, phase shifters may be used to hold flows depending on the objectives of the study. For post-disturbance scenarios, the phase shifters are assumed to not hold flows and are not automatically regulated.

7. Conductor Sizes

APS uses several types of standard phase conductors depending on the design, voltage class and application for new transmission lines. Table 1 lists the current standard conductor sizes for the various voltage levels used for new facilities.

Table 1. Standard conductor sizes.

Class	Conductor
525 kV	$3 \times 1780 \mathrm{kcm}$ ACSR Chukar
	$2 \times 2156 \mathrm{kcm}$ ACSR Bluebird
345 kV	$2 \times 795 \mathrm{kcm}$ ACSR Tern
230 kV	$1 \times 2156 \mathrm{kcm}$ ACSS Bluebird
	$1 \times 1272 \mathrm{kcm}$ ACSR Bittern

	1x795 kcm ACSR Tern
115 kV	(same as 230 kV construction)
69 kV	$1 \times 795 \mathrm{kcm}$ ACSS Tern
	$1 \times 795 \mathrm{kcm}$ AA Arbutus
	$1 \times 336 \mathrm{kcm}$ ACSR Linnet

8. 69 kV System Modeling

230 kV facility outages may impact the underlying 69 kV system due to the interconnection of those systems. For this reason, power flow cases may include a detailed 69 kV system representation. Solutions to any problems encountered on the 69 kV system are coordinated with the subtransmission planning engineers.
9. Substation Transformers

- 500 kV and 345 kV Substations

Bulk substation transformer banks may be made up of one three-phase or three single-phase transformers, depending upon bank size and economics. For larger banks where single-phase transformers are used, a fourth (spare) single-phase transformer will be used in a jack-bus arrangement to improve reliability and facilitate connection of the spare in the event of an outage of one of the single-phase transformers.

TCULs are typically used on the 525 kV transformers generally with a range of plus or minus 10% of nominal voltage. Primary voltages will be 525 kV or 345 kV , and secondary voltages will be 230 kV or 69 kV and tertiary voltages will be 34.5 kV , 14.4 kV or 12.47 kV .

- 230 kV Substations

For high-density load areas, both $230 / 69 \mathrm{kV}$ and $69 / 12.5 \mathrm{kV}$ transformers can be utilized. $230 / 69 \mathrm{kV}$ transformers will be rated at 113/150/188 MVA with a $65^{\circ} \mathrm{C}$ temperature rise, unless otherwise specified. $69 / 12.5 \mathrm{kV}$ transformers will be rated at $25 / 33 / 41$ MVA with a $65^{\circ} \mathrm{C}$ temperature rise, unless otherwise specified.

With all elements in service, a transformer may be loaded up to its top Forced Air (ONAF) rating without sustaining any loss of service life. For a single contingency outage (loss of one transformer) the remaining new
transformer or transformers may be loaded up to 25% above their top ONAF rating, unless heat test data indicate a different overload capability. The loss of service life sustained will depend on the transformer pre-loading and the outage duration. No-load tap setting adjustment capabilities on 230/69 kV transformers will be $\pm 5 \%$ from the nominal voltage setting ($230 / 69 \mathrm{kV}$) at 2½\% increments.
10. Switchyard Arrangements

- 500 kV and 345 kV Substations

Existing 345 kV switchyard arrangements use breaker-and-one-half, main-and-transfer, or modified paired-element circuit breaker switching schemes. Because of the large amounts of power transferred via 500 kV switchyards and the necessity of having adequate reliability, all 500 kV circuit breaker arrangements are planned for an ultimate breaker-and-one-half scheme. If only three or four elements are initially required, the circuit breakers are connected in a ring bus arrangement, but physically positioned for a breaker-and-one-half scheme. The maximum desired number of elements to be connected in the ring bus arrangement is four. System elements such as generators, transformers, and lines will be arranged in breaker-and-one-half schemes such that a failure of a center breaker will not result in the loss of two lines routed in the same general direction and will minimize the impact of losing two elements.

- 230 kV Substations

Future 230/69 kV substations should be capable of serving up to 452 Megavolt-Amps (MVA) of load. 400 MVA has historically been the most common substation load level in the Phoenix Metropolitan area. Future, typical 230/69 kV substations should accommodate up to four 230 kV line terminations and up to three $230 / 69 \mathrm{kV}$ transformer bays. Based upon costs, as well as reliability and operating flexibility considerations, a breaker-and-one-half layout should be utilized for all future 230/69 kV Metropolitan Phoenix Area substations, with provision for initial development to be a ring bus. Any two 230/69 kV transformers are to be separated by two breakers,
whenever feasible, so that a stuck breaker will not result in an outage of both transformers.

11. Series Capacitor Application

Series capacitors are planned according to the needs of their associated transmission projects and are typically a customized design. Benefits resulting from the installation of series capacitors include but are not limited to improved transient stability, voltage regulating capability and reactive capability. A new series capacitor installation will currently include MOV protection that mitigates fault current levels through the series capacitor for internal faults. A bank will typically bypass for internal faults because there is no benefit to requiring that the bank remain in service when the line is tripped. Depending on the required impedances and ampacity level, new series capacitor banks may be either one to three segment units. The bank ratings should be based upon line's ultimate uses. At a minimum bank should be upgradable to higher ampacity needs in the future. Most 500 kV banks in APS system have a continuous rating of either 1750 A or 2200 A . ANSI standard require that the 30 minutes emergency rating be 135% of the continuous.

12. Shunt and Tertiary Reactor Application

Shunt and/or tertiary reactors may be installed to prevent open end line voltages from being excessive, in addition to voltage control. The open end line voltage must not be more than 0.05 per unit voltage greater than the sending end voltage. Tertiary reactors may also be used for voltage and VAR control as discussed above. EHV reactors are used to adjust pre-disturbance voltages if controlled through a breaker, circuit switcher or motor operated disconnect switch. APS currently does not automatically control its EHV or HV reactors or capacitors.

B. Power Flow Studies

1. System Stressing

Realistic generation capabilities and schedules should be used to stress the transmission system in order to maximize the transfer of resources during the
maximum load condition or path rating studies. Existing WECC or regional path ratings and facilities ratings will not be violated pre- or facility ratings postdisturbance.
2. Displacement

In cases where displacements (due to power flow opposite normal generation schedules) may have an appreciable effect on transmission line loading, a reasonable amount of displacement (Generation Units) may be removed in-order to stress a given transmission path. Alternately, no fictitious generation sources may be used to stress paths.

C. Transient Stability Studies

1. Fault Simulation

When studying system disturbances caused by faults, two conditions will be simulated:

- Three-phase-to-ground faults with normal clearing.
- Single-line-to-ground faults with a stuck circuit breaker in one phase with delayed clearing.

2. Margin

- Generation margin may be applied for the contingencies primarily affected by generation.
- Power flow margin may be applied for the contingencies primarily affected by power flow

3. Unit Tripping

Generator unit tripping may be allowed in-order to increase system stability performance if part of a proposed or existing remedial action scheme.
4. Machine Reactance Representation

For transient stability studies, the unsaturated transient reactance of machines with full representation will be used.
5. Fault Damping

Fault damping will be applied to the generating units adjacent to faults. Fault damping levels will be determined from studies that account for the effect of
generator amortisseur windings and the SSR filters. Fault damping will be applied on the buses listed in Table 2 for faults on the nearest EHV or HV bus.

Table 2. Fault damping levels.

Fault location	Affected units	Percent Damping
Palo Verde 500 kV	$1-3$	7.25%
Four Corners $500 \& 345 \mathrm{kV}$	$4 \& 5$	10%
Coronado 500 kV	$1 \& 2$	12.5%
Cholla 500 kV	$2-4$	10%

6. Series Capacitor Switching

For APS designed banks, a MOV/by-pass model is employed in transient stability analysis.

D. Short Circuit Studies

Three-phase and single-phase-to-ground faults will be evaluated.

1. Generation Representation

All generation will be represented.
2. Machine Reactance Representation

The saturated subtransient reactance ($\mathrm{X}{ }_{\mathrm{d}}$) values will be used.

3. Line Representation

Unless previously calculated as part of APSs requirement for MOD-032, the transmission line zero sequence impedance $\left(\mathrm{Z}_{0}\right)$ is assumed to be equal to three times the positive sequence impedance $\left(\mathrm{Z}_{1}\right)$. If a new transmission impedance is required, APS utilizes the CAPE line constant program for determining sequence values.

4. Transformer Representation

The transformer zero sequence impedance (X_{0}) is assumed to be equal to the positive sequence impedance (X_{1}). Bulk substation transformers are modeled as auto-transformers. The two-winding model is that of a grounded-wye transformer. The three-winding model is that of a wye-delta-wye with a solid ground.
5. Series Capacitor Switching

Series capacitors, locations to be determined from short circuit studies, will be flashed and reinserted as appropriate.

E. Reactive Power Margin Studies

Using Q-V curve analyses, APS assesses the interconnected transmission system to ensure there are sufficient reactive resources located throughout the electric system to maintain post-transient voltage stability for system normal conditions and certain contingencies.

IV. SYSTEM PERFORMANCE

A. Power Flow Studies

1. Normal (Base Case Conditions)

- Voltage Levels
a. General
i. 500 kV bus voltages will be maintained between 1.05 and 1.08 pu on a 500 kV base.
ii. 345 kV bus voltage will be maintained between .99 and 1.04 pu on a 345 kV base.
iii. 500 kV and 345 kV system voltages are used to maintain proper 230 kV voltages.
iv. Voltage on the 230 kV and 115 kV systems should be between 1.01 and 1.05 pu.
v. Tap settings for 230/69 kV and 345/69 kV transformers should be used to maintain low side (69 kV) voltages between 1.03 and 1.04 pu. Seasonal tap changes may be required.
b. Specific Buses
i. APS Pinnacle Peak 230 kV bus voltage should be between 1.025 and 1.035 pu.
ii. Saguaro 115 kV bus voltage will be approximately 1.035 pu.
iii. Westwing 230 kV bus voltage should be between 1.04 and 1.05 pu.
iv. Voltage at the Prescott (DOE) 230 kV bus should be approximately 1.02 pu.
- Facility Loading Limits
a. Transmission Lines

EHV transmission line loading cannot exceed 100% of the continuous rating, which is based upon established conductor temperature limit or sag limitation as defined by APS latest estimates for NERC Standard FAC-008-3.
b. Underground Cable

Underground cable loading should not exceed 100% of the continuous rating with all elements in service. This rating is based on a cable temperature of $85^{\circ} \mathrm{C}$ with no loss of cable life.
c. Transformers

For all transformers pre-disturbance flows cannot exceed APS established continuous ratings using methodologies used in reporting ratings under NERC Standard FAC-008-3.
d. Series Capacitors

Series Capacitors cannot exceed 100% of continuous rating as determined using methodologies used in reporting ratings under NERC Standard FAC-008-3.

- Interchange of VARS

Interchange of VARs between companies at interconnections will be reduced to a minimum and maintained near zero.

- Distribution of Flow

Schedules on a new project will be compared to simulated power flows to ensure a reasonable level of flowability.
2. Single and selected Double Contingency Outages

- Voltage Levels

Maximum voltage deviation on APS' major buses cannot exceed 5\% for single contingencies and 10% for selected double contingencies. APS uses the following formulae to calculate voltage deviations for post-disturbance conditions.

$$
\% \text { Deviation }=100 x\left(\frac{\text { Vpre }- \text { Vpost }}{\text { Vpre }}\right)
$$

- Facilities Loading Limits
a. Transmission Lines

Transmission line loading cannot exceed 100% of the lesser of the sag limit or the emergency rating (30-minute rating) which is based upon established conductor temperature limits.
b. Underground Cable

Underground cable loading should not exceed the emergency rating during a single-contingency outage. This rating is based on a cable temperature of $105^{\circ} \mathrm{C}$ for two hours of emergency operation with no loss of cable life.
c. Transformers

For all transformers post-disturbance flows cannot exceed APS established emergency ratings using methodologies used in reporting ratings under NERC Standard FAC-008-3.
d. Series Capacitors

Series Capacitors cannot exceed 100\% of emergency rating as determined using methodologies used in reporting ratings under NERC Standard FAC-008-3.

- Generator Units

Generator units used for controlling remote voltages will be modified to hold their base case terminal voltages.

- Impact on Interconnected System

Single and selected double contingency outages will not cause overloads upon any neighboring transmission system.

B. Transient Stability Studies

Transient stability studies are primarily performed on the 500 kV and 345 kV systems but may be performed on lower voltage systems depending on the study objectives.

1. Fault Simulation

Three-phase and single-line-to-ground faults initiated disturbances will be simulated according to the guidelines described in NERC Table 1 as well as WECC Regional Criteria TPL-001-WECC-CRT-2. Normal clearing times for different voltage levels are given Table 3 for new facilities. Fault damping will be applied when applicable at fault inception.

Table 3. Normal clearing times for new facilities.

Voltage level	Normal clearing times
$500 \& 345 \mathrm{kV}$	4 cycle
230 kV	5 cycle
115 kV	5 cycle
69 kV	7 cycle

2. Series Capacitor Switching

All of APS's designed and installed series capacitor units are protected from internal faults using MOV and by-pass elements. For transient stability analysis, models are used to represent the mitigation provided by the MOV components or through by-passing of the series capacitors.
3. System Stability

The system performance will be considered acceptable if the following conditions are met:

- All machines in the system remain synchronized as demonstrated by the relative rotor angles.
- Positive system damping exists as demonstrated by the damping of relative rotor angles and the damping of voltage magnitude swings. For $\mathrm{N}-1$ and $\mathrm{N}-2$ disturbances, APS follows the voltage and frequency
performance guidelines as described in NERC's Table 1 and WECC Regional Criteria TPL-001-WECC-CRT-2.
- Cascading does not occur for any category contingency.

4. Re-closing

Automatic re-closing of circuit breakers controlling EHV facilities is not utilized.
5. Short Circuit Studies

Fault current shall not exceed 100% of the applicable breaker fault current interruption capability for three-phase or single-line-to-ground faults.
6. Reactive Power Margin Studies

For system normal conditions or single contingency conditions, post-transient voltage stability is required with a path or load area modeled at a minimum of 105% of the path rating or maximum planned load limit for the area under study, whichever is applicable. For multiple contingencies, post-transient voltage stability is required with a path or load area modeled at a minimum of 102.5% of the path rating or maximum planned load limit for the area under study, whichever is applicable.

2013 SYSTEM RATING MAPS

PREPARED BY

Daniel Haughton
Simeon Onwuzuligbo Joe Medina
September 2013

TABLE OF CONTENTS

LEGEND 1
EHV 2
METRO 230KV 6
NORTHERN 230KV 8
SOUTHERN 230KV 10

SYMBOL

\square

EHV-2

EMERGENCY RATING (AMPS)

SOUTHERN 230KV

ARIZONA PUBLIC SERVICE COMPANY
TEN-YEAR TRANSMISSION SYSTEM PLAN

2014-2023

TECHNICAL STUDY REPORT

FOR
THE ARIZONA CORPORATION COMMISSION

JANUARY 2014

Executive Summary

Pursuant to North American Electric Reliability Corporation ("NERC") Standard TPL-001 "System Performance Under Normal (No Contingency) Conditions (Category A)", Arizona Public Service Company ("APS") performs annually a Category A analysis. The Category A analysis is performed for system conditions listed in Table I of the NERC/WECC Planning standards.

Results of the study indicate that, with the projects identified in APS's Ten-Year Transmission System Plan, APS is fully compliant with NERC Standard TPL-001.

Pursuant to NERC Standard TPL-002 "System Performance Following Loss of a Single Bulk Electric System Element (Category B)", APS performs annually a Category B contingency analysis. In Table I of the NERC/WECC planning standards, there are a total of four different Category B events that are to be studied each year to meet NERC Standard TPL-002.

A comprehensive list of contingencies was developed for the Category B contingency analysis and performed for the system conditions listed in Table I of the NERC/WECC Planning standards based on engineering judgment. APS believes that the selection of contingencies for inclusion in these studies, which is based on Category B of Table I of the NERC/WECC Planning standards, is acceptable to WECC. If requested by WECC, APS will implement measures to correct any deficiencies that have been identified by WECC.

Results of the study indicate that, with the projects identified in APS’s Ten-Year Transmission System Plan, APS is fully compliant with NERC Standard TPL-002.

Table of Contents

Page
I. Introduction 1
II. Base Case Development 1
III. Power Flow Analyses 3
IV. Stability Analyses 6
V. Category A \& B Contingency Study Results 6
Appendices
A. Representative Steady-State Contingency List A1-A74
B. Power Flow Maps for Security Needs Projects B1-B5
C. 2018 Transient Stability Contingency List C1-C6
D. 2023 Transient Stability Contingency List D1-D6

ARIZONA PUBLIC SERVICE COMPANY 2014-2023
 TEN-YEAR TRANSMISSION SYSTEM PLAN TECHNICAL STUDY REPORT

I. Introduction

This technical study report is performed and filed annually with the Arizona Corporation Commission ("Commission") pursuant to ARS § 40-360.02 and Decision No. 63876 (July 25, 2001). This report summarizes the results of power flow analyses and stability analyses for the Arizona Public Service Company ("APS") transmission system.

Power flow analyses were conducted for every year within the ten year planning window (2014-2023) and performed for two scenarios: (i) assumption that all transmission system elements are in service and within continuous ratings (Category A); and (ii) assumption of an outage on a single element, with all remaining system elements remaining within emergency ratings (Category B). Voltage deviations for these scenarios must also be within established guidelines. These voltage deviation guidelines closely approximate post-transient Volt Ampere Reactive ("VAR") margin requirements of the Western Electricity Coordinating Council ("WECC"). More detail is provided in APS's Transmission Planning Process and Guidelines, which is also included in the annual APS Ten-Year Transmission System Plan ("Ten-Year Plan") filing.

The stability analyses were performed to simulate electrical disturbances on the transmission system and evaluate the system response. The desired result is that all generators will remain on line, no additional lines will open, and the system oscillations will damp out.

Results of the power flow and stability analyses aid in determining when and where new electrical facilities are needed because of reliability or security reasons. Additionally, some facilities are planned to address adequacy concerns. These include the interconnection of generation to the transmission system or efforts to increase import capability and/or export/scheduling capability to load-constrained or other areas.

II. Base Case Development

Power flow cases were created for each year of the 2014-2023 study time frame. These cases were developed from the latest available WECC heavy summer power flow cases.

The 2013 heavy summer operating case was chosen as the first bulk seed case. This case was developed from a 2013 WECC heavy summer base case, and then updated in a coordinated effort between Arizona utilities, as well as the Imperial Irrigation District, to include the sub-transmission and distribution models. This case was used as
the seed case in the creation of the 2014-2017 power flow cases used for the power flow analyses performed for the 2014-2023 Ten-Year Plan. Each intermediate case developed was updated with the forecasted loads and any system additions/upgrades that are planned in the respective year.

The second seed case chosen was the 2018 heavy summer power flow case that was developed through the CATS and SATS sub-committees of SWAT. In a collaborative effort, the Arizona utilities used the jointly developed 2018 case to develop a 2018 summer case that included the sub-transmission and distribution systems of the Arizona utilities. This seed case was used to develop the 2019-2022 power flow cases. Each intermediate case developed was updated with the forecasted loads and any system additions/upgrades that are planned in the respective year.

The third and final seed case chosen was the 2023 heavy summer power flow case that was also developed through the CATS and SATS sub-committees of SWAT. This seed case was not used to develop any other power flow cases. In addition, the 2023 seed case was updated with the forecasted loads and any system additions/upgrades that were planned.

The forecasted loads modeled within all the power flow base cases include the effects of distributed renewable generation as well as energy efficiency programs. In addition, the forecasted loads are based on the most recent data at the time the cases are constructed ${ }^{1}$.

These cases represent the latest transmission and sub-transmission plans, load projections, and resource plans of utilities and independent power producers. By utilizing WECC base cases, all loads, resources, firm power transfers, and planned projects within the WECC system are represented. By using jointly developed seed cases the most accurate Arizona system is represented.

[^2]
III. Power Flow Analyses

Base case and single contingency conditions are evaluated to determine system needs and timing. Various iterations of possible solutions lead to the final plans for transmission additions. The contingency analysis involves simulations for every nonradial 115 kV or above line that APS owns, partially owns, or operates. Transformer as well as generator outages are also evaluated. A comprehensive list of contingencies can be found in Appendix A. Due to the size of each year's contingency list, only one year is included as an example.

The APS system includes several reactive power resources that are used to maintain bus voltages within the limits defined by APS's Transmission Planning Process \& Guidelines. These reactive power resources include shunt devices, series compensation, and tap changing transformers. The reactive power resources are adequate and meet the system performance.

APS does not have any additional existing or planned voltage or power flow control devices except those noted in the preceding paragraph. These devices exist outside the APS control area; however, they are not utilized or their operation is not necessary as a result of the contingencies in this study.

No planned outage of bulk electric equipment at APS occurs during the heavy summer peak time. Therefore, it is not necessary to study planned outages since this Ten-Year Plan study focuses on the heavy summer peak time.

Results of the power flow studies are tabulated in a Security Needs Table and an Adequacy Needs Table, as shown below. These tables identify 9 transmission projects that are included in this Ten-Year Plan filing. Some of the projects were classified as Adequacy Needs because of the uncertainty of generation location, project size, and transmission availability in the later years. As projects near the five-year planning time frame, they may be redefined as Security Needs projects. For the projects included in the Security Needs Table, selected maps of the power flow simulations are contained in Appendix B showing the pre-project scenario (outage and resulting violation) and the post-project scenario (outage and no criteria violations).

Table 1: Security Needs Table

Transmission Project	In Service Year	Critical Outage	Limiting Element/Condition	Map
Palm Valley-TS2- Trilby Wash 230kV Line and Trilby Wash 230/69kV Substation	2015	Javelina - Surprise 69 kV line	Overloads Surprise - Dysart 69kV line	B2-B3
Mazatzal 345/69kV Substation	2017	Preacher Canyon - Owens- Tonto 69kV line	Voltage deviations on the sub- transmission system in the area resulting in load shedding. Also overloads the Childs-Irving- Strawberry 69kV line.	B4-B5

Table 2: Adequacy Needs Table

Transmission Project	In Service Year	System Benefits
Palo Verde Hub- North Gila 500kV \#2 Line	2015	Increases import capability for the Yuma area and export/scheduling capability from the PV area to provide access to both solar and gas resources. Increases transmission system reliability and ability to deliver power from these resources.
Palo Verde-Delaney 500kV Line	2016	Increases the export scheduling capability from the Palo Verde ("PV"") area to provide access to both solar and gas resources. The project is also to provide for the interconnection of 4 solar generation projects into the Delaney switchyard.
Delaney-Sun Valley 500kV Line	2016	Increases the import capability for the Phoenix Metropolitan area and export/scheduling capability from the PV area to provide access to both solar and gas resources. Along with the Sun Valley-Trilby Wash 230kV line, provides a new Transmission source for power in the far north and west sides of the Phoenix Metropolitan transmission system.
Sun Valley-Trilby Wash 230kV Line	2016	Provides a second 230kV source for Trilby Wash so that it is not served as a radial substation, thereby increasing the local system reliability. With the 500kV source at Sun Valley, the project provides a new source for power in the far north and west sides of the Phoenix Metropolitan transmission system.
Sun Valley-Morgan $500 k V ~ L i n e ~$ 2018	Increases import capability for the Phoenix Metropolitan area and export/scheduling capability from the PV area which includes both solar and gas resources. Increases transmission system reliability and ability to deliver power from these resources. Provides a second 500kV source for the Sun Valley substation. Provides support for multiple transmission corridor contingencies.	
North Gila-Orchard 230kV Line	2018	Increases transmission system reliability and ability to distribute and deliver power within the Yuma area.

IV. Stability Analyses

A stability simulation for simulated three-phase faults was performed for 2018 and 2023 for every non-radial 345 kV and 500 kV , and select 230 kV lines that APS owns (totally or partially) or operates. It has been APS's experience that stability concerns do not manifest on the sub-transmission system, which is primarily designed to deliver power to load. Therefore, no simulations were performed at voltage levels less than 115 kV , with the possible exception of generators or generator step up transformers at the generator substation. Additionally, every new proposed generation plant will be required to perform stability evaluations prior to receiving permission to interconnect to the transmission system. A list of the transmission elements included in the stability analyses can be found in Appendices C and D.

Existing and planned protection systems are utilized in the study, including any backup or redundant system, and represent fault clearing times, the operation of the protection system, and the resulting removal of the facility that would occur as a result of the simulated event. Each simulation modeled a 3-phase bus fault, appropriate series capacitor flashing and reinsertion, fault removal, and transmission line removal. System performance was evaluated by monitoring representative generator rotor angles, bus voltages and system frequency. Plots of these system parameters are available upon request. The stability simulations performed to date indicate that no stability problems limit the transmission system.

V. Category A \& B Contingency Study Results

A high level overview of the results for the Category A and Category B contingences is shown in Table 3 below. From this table, it is shown that each of the Category A and Category B contingencies meets the NERC/WECC Planning Standards.

Table 3: Overview of Category A \& B Standard Results

NERC Planning Standards Category A		1-5 year Time Frame		6-10 year Time Frame	
		Case Years Studied	$\begin{gathered} \text { Standards } \\ \text { Met? } \end{gathered}$	Case Years Studied	Standards Met?
1	All Facilities in Service	2014 through 2018	Yes	2019 through 2023	Yes
NERC Planning Standards Category B		1-5 year Time Frame		6-10 year Time Frame	
		Case Years Studied	$\begin{gathered} \text { Standards } \\ \text { Met? } \end{gathered}$	Case Years Studied	$\begin{aligned} & \hline \text { Standards } \\ & \text { Met? } \end{aligned}$
1	3-Phase Fault with Normal Clearing Generator	2014 through 2018	Yes	2019 through 2023	Yes
2	3-Phase Fault with Normal Clearing Transmission Circuit	2014 through 2018	Yes	2019 through 2023	Yes
3	3-Phase Fault with Normal Clearing Transformer	2014 through 2018	Yes	2019 through 2023	Yes
4	Loss of an Element without a Fault	2014 through 2018	Yes	2019 through 2023	Yes

Table 3 is a high level summary that shows, with the projects listed in Tables 1 \& 2, the APS system meets the criteria listed in NERC Standards TPL-001 and TPL-002.

Due to the size of the transient stability, power flow thermal, and voltage steady state analyses, the detailed results are not included. However, they are available upon request by WECC or any other authorized stakeholder.

APPENDIX A

Representative Steady-State Contingency List
 (2014 used as an example year)

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1	Line	Line \$ROGERS 69.0 to ROGERS 69.0 Circuit 1
line_2	Line	Line SAN_JUAN 345.0 to MCKINLEY 345.0 Circuit 1
line_3	Line	Line SAN_JUAN 345.0 to MCKINLEY 345.0 Circuit 2
line_4	Line	Line MACHO_SPRNGS 345.0 to SPRINGR 345.0 Circuit 1
line_5	Line	Line HIDALGO 345.0 to GREENLEE 345.0 Circuit 1
line_6	Line	Line CHOLLA 500.0 to SAGUARO 500.0 Circuit 1
line_7	Line	Line FOURCORN 500.0 to MOENKOPI 500.0 Circuit 1
line_8	Line	Line MOENKOPI 500.0 to YAVAPAI 500.0 Circuit 1
line_9	Line	Line MOENKOPI 500.0 to CEDARMT 500.0 Circuit 1
line_10	Line	Line MOENKOPI 500.0 to ELDORDO 500.0 Circuit 1
line_11	Line	Line MOENKOPI 500.0 to MARKETPL 500.0 Circuit 1
line_12	Line	Line NAVAJO 500.0 to MOENKOPI 500.0 Circuit 1
line_13	Line	Line NAVAJO 500.0 to DUGAS 500.0 Circuit 1
line_14	Line	Line NAVAJO 500.0 to CRYSTAL 500.0 Circuit 1
line_15	Line	Line SAGUARO 500.0 to TORTOLIT 500.0 Circuit 1
line_16	Line	Line SAGUARO 500.0 to TORTOLIT 500.0 Circuit 2
line_17	Line	Line SAGUARO 500.0 to TORTLIT2 500.0 Circuit 1
line_18	Line	Line WESTWING 500.0 to MORGAN 500.0 Circuit 1
line_19	Line	Line YAVAPAI 500.0 to WESTWING 500.0 Circuit 1
line_20	Line	Line MORGAN 500.0 to PNPKAPS 500.0 Circuit 1
line_21	Line	Line CEDARMT 500.0 to YAVAPAI 500.0 Circuit 1
line_22	Line	Line SGRLF 500.0 to CHOLLA 500.0 Circuit 1
line_23	Line	Line DUGAS 500.0 to MORGAN 500.0 Circuit 1
line_24	Line	Line CHOLLA 345.0 to PNPKAPS 345.0 Circuit 1
line_25	Line	Line CHOLLA 345.0 to PRECHCYN 345.0 Circuit 1
line_26	Line	Line FOURCORN 345.0 to SAN_JUAN 345.0 Circuit 1
line_27	Line	Line FOURCORN 345.0 to WESTMESA 345.0 Circuit 1
line_28	Line	Line FOURCORN 345.0 to RIOPUERC 345.0 Circuit 1
line_29	Line	Line FOURCORN 345.0 to CHOLLA 345.0 Circuit 1
line_30	Line	Line FOURCORN 345.0 to CHOLLA 345.0 Circuit 2
line_31	Line	Line PRECHCYN 345.0 to PNPKAPS 345.0 Circuit 1
line_32	Line	Line BUCKEYE 230.0 to BUCKEYE2 230.0 Circuit 1
line_33	Line	Line BUCKEYE 230.0 to LIBERTY 230.0 Circuit 1
line_34	Line	Line CACTUS 230.0 to OCOTILLO 230.0 Circuit 1
line_35	Line	Line CASGRAPS 230.0 to MILLIGAN 230.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_36	Line	Line CHOLLA 230.0 to LEUPP 230.0 Circuit 1
line_37	Line	Line CTRYCLUB 230.0 to LINCSTRT 230.0 Circuit 1
line_38	Line	Line CTRYCLUB 230.0 to MEADOWBK 230.0 Circuit 1
line_39	Line	Line CTRYCLUB 230.0 to GRNDTRML 230.0 Circuit 1
line_40	Line	Line DEERVALY 230.0 to WESTWNGE 230.0 Circuit 1
line_41	Line	Line DEERVALY 230.0 to ALEXANDR 230.0 Circuit 1
line_42	Line	Line DEERVALY 230.0 to PINPKSRP 230.0 Circuit 1
line_43	Line	Line EAGLEYE 230.0 to BUCKEYE2 230.0 Circuit 1
line_44	Line	Line EL SOL 230.0 to WHTNKAPS 230.0 Circuit 1
line_45	Line	Line EL SOL 230.0 to AGUAFRIA 230.0 Circuit 1
line_46	Line	Line FOURCORN 230.0 to PILLAR 230.0 Circuit 1
line_47	Line	Line GLENDALE 230.0 to GLENDALW 230.0 Circuit 1
line_48	Line	Line GLENDALE 230.0 to GRNDTRML 230.0 Circuit 1
line_49	Line	Line BUCKEYE2 230.0 to LIBERTY 230.0 Circuit 1
line_50	Line	Line LEUPP 230.0 to COCONINO 230.0 Circuit 1
line_51	Line	Line LINCSTRT 230.0 to WPHXAPSN 230.0 Circuit 1
line_52	Line	Line LONEPEAK 230.0 to SUNYSLOP 230.0 Circuit 1
line_53	Line	Line MEADOWBK 230.0 to SUNYSLOP 230.0 Circuit 1
line_54	Line	Line OCOTILLO 230.0 to LINCSTRT 230.0 Circuit 1
line_55	Line	Line OCOTILLO 230.0 to PPAPS N 230.0 Circuit 1
line_56	Line	Line REACH 230.0 to LONEPEAK 230.0 Circuit 1
line_57	Line	Line PPAPS W 230.0 to PPAPS C 230.0 Circuit 1
line_58	Line	Line PPAPS W 230.0 to PPKWAPA 230.0 Circuit 1
line_59	Line	Line SAGUARO 230.0 to TATMOMLI 230.0 Circuit 1
line_60	Line	Line SNTAROSA 230.0 to TATMOMLI 230.0 Circuit 1
line_61	Line	Line SNTAROSA 230.0 to KNOX 230.0 Circuit 1
line_62	Line	Line SNTAROSA 230.0 to DBG 230.0 Circuit 1
line_63	Line	Line SNTAROSA 230.0 to TESTTRAK 230.0 Circuit 1
line_64	Line	Line SURPRISE 230.0 to EL SOL 230.0 Circuit 1
line_65	Line	Line SURPRISE 230.0 to WESTWNGW 230.0 Circuit 1
line_66	Line	Line WESTWNGW 230.0 to WESTWNGE 230.0 Circuit 1
line_67	Line	Line WHTNKAPS 230.0 to RUDD 230.0 Circuit 1
line_68	Line	Line WPHXAPSS 230.0 to WPHXAPSN 230.0 Circuit 1
line_69	Line	Line YAVAPAI 230.0 to VERDE N 230.0 Circuit 1
line_70	Line	Line KYR-WEST 230.0 to OCOTILLO 230.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_71	Line	Line KYR-WEST 230.0 to KNOX 230.0 Circuit 1
line_72	Line	Line GILARIVR 230.0 to GILABEND 230.0 Circuit 1
line_73	Line	Line GILARIVR 230.0 to TS4 230.0 Circuit 1
line_74	Line	Line WPHXAPSN 230.0 to WHTNKAPS 230.0 Circuit 1
line_75	Line	Line FORTROCK 230.0 to RNDVLYAZ 230.0 Circuit 1
line_76	Line	Line FORTROCK 230.0 to JUNIPRMT 230.0 Circuit 1
line_77	Line	Line RACEWAY 230.0 to RACEWYWA 230.0 Circuit 1
line_78	Line	Line VERDE S 230.0 to COCONINO 230.0 Circuit 1
line_79	Line	Line VERDE S 230.0 to VERDE N 230.0 Circuit 1
line_80	Line	Line GLENDALW 230.0 to AGUAFRIA 230.0 Circuit 1
line_81	Line	Line WILOWLKE 230.0 to YAVAPAI 230.0 Circuit 1
line_82	Line	Line WILOWLKE 230.0 to WILOWLKW 230.0 Circuit 1
line_83	Line	Line WILOWLKW 230.0 to PRESCOTT 230.0 Circuit 1
line_84	Line	Line AVERY 230.0 to RACEWAY 230.0 Circuit 1
line_85	Line	Line AVERY 230.0 to SCTWSH 230.0 Circuit 1
line_86	Line	Line SCTWSH 230.0 to PPAPS W 230.0 Circuit 1
line_87	Line	Line TS4 230.0 to PLMVLY 230.0 Circuit 1
line_88	Line	Line TS4 230.0 to LIBERTY 230.0 Circuit 1
line_89	Line	Line PPAPS C 230.0 to REACH 230.0 Circuit 1
line_90	Line	Line PPAPS C 230.0 to PPAPS E 230.0 Circuit 1
line_91	Line	Line PPAPS E 230.0 to LONEPEAK 230.0 Circuit 1
line_92	Line	Line PPAPS E 230.0 to PPAPS N 230.0 Circuit 1
line_93	Line	Line JUNIPRMT 230.0 to SELIGMAN 230.0 Circuit 1
line_94	Line	Line MILLIGAN 230.0 to SAGUARO 230.0 Circuit 1
line_95	Line	Line PPAPS N 230.0 to CACTUS 230.0 Circuit 1
line_96	Line	Line PPAPS N 230.0 to PINPKSRP 230.0 Circuit 1
line_97	Line	Line PPAPS N 230.0 to PINPKSRP 230.0 Circuit 2
line_98	Line	Line CEDARMT2 138.0 to CEDARMT3 138.0 Circuit 1
line_99	Line	Line ADAMS 115.0 to ADAMSTAP 115.0 Circuit 1
line_100	Line	Line PRESCOTT 115.0 to BAGDTWN 115.0 Circuit 1
line_101	Line	Line SAG.EAST 115.0 to SAG.WEST 115.0 Circuit 1
line_102	Line	Line SAG.EAST 115.0 to MARANATP 115.0 Circuit 1
line_103	Line	Line SAG.EAST 115.0 to ORACLE 115.0 Circuit 1
line_104	Line	Line SAG.WEST 115.0 to SNMANUEL 115.0 Circuit 1
line_105	Line	Line SAG.WEST 115.0 to ED-5B 115.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_141	Line	Line HASSYAMP 500.0 to MESQUIT2 500.0 Circuit 1
line_142	Line	Line HASSYAMP 500.0 to HDWSH 500.0 Circuit 1
line_143	Line	Line HASSYAMP 500.0 to N.GILA 500.0 Circuit 2
line_144	Line	Line ASARCOSR 115.0 to ASARCOTP 115.0 Circuit 1
line_145	Line	Line ASARCOTP 115.0 to HAYDENAZ 115.0 Circuit 1
line_146	Line	Line ASARCOTP 115.0 to CRUSHER 115.0 Circuit 1
line_147	Line	Line BONNEYTP 115.0 to BONNYBRK 115.0 Circuit 1
line_148	Line	Line BONNEYTP 115.0 to CRUSHER 115.0 Circuit 1
line_149	Line	Line BONNEYTP 115.0 to COOLIDGE 115.0 Circuit 1
line_150	Line	Line CARLOTA 115.0 to PINTOVLY 115.0 Circuit 1
line_151	Line	Line CARLOTA 115.0 to SILVERK2 115.0 Circuit 1
line_152	Line	Line ELLISON 115.0 to ELLISOTP 115.0 Circuit 1
line_153	Line	Line FRAZIER 115.0 to HORSMESA 115.0 Circuit 1
line_154	Line	Line FRAZIER 115.0 to MOONSHI2 115.0 Circuit 1
line_155	Line	Line FRAZIER 115.0 to ROOSEVLT 115.0 Circuit 1
line_156	Line	Line GOLDFELD 115.0 to HORSMESA 115.0 Circuit 1
line_157	Line	Line HAYDENAZ 115.0 to KEARNYTP 115.0 Circuit 1
line_158	Line	Line HORSMESA 115.0 to MRMNFLAT 115.0 Circuit 1
line_159	Line	Line GASCLEAN 115.0 to ELLISOTP 115.0 Circuit 1
line_160	Line	Line KEARNYTP 115.0 to MORRISAZ 115.0 Circuit 1
line_161	Line	Line KNOLL 115.0 to MORRISAZ 115.0 Circuit 1
line_162	Line	Line MIAMI 115.0 to PINTOVLY 115.0 Circuit 1
line_163	Line	Line MIAMI 115.0 to MIAMI 3 115.0 Circuit 1
line_164	Line	Line MOONSHIN 115.0 to MOONSHI2 115.0 Circuit 1
line_165	Line	Line MOONSHIN 115.0 to PINAL 115.0 Circuit 1
line_166	Line	Line MOONSHIN 115.0 to REFINETP 115.0 Circuit 1
line_167	Line	Line OAKFLAT 115.0 to SILVERT1 115.0 Circuit 1
line_168	Line	Line OAKFLAT 115.0 to TRASK 115.0 Circuit 1
line_169	Line	Line PINAL 115.0 to SILVERT1 115.0 Circuit 1
line_170	Line	Line RAY 115.0 to KNOLL 115.0 Circuit 1
line_171	Line	Line RAY 115.0 to SUPERIOR 115.0 Circuit 1
line_172	Line	Line REFINERY 115.0 to REFINETP 115.0 Circuit 1
line_173	Line	Line SILVERK1 115.0 to SILVERT1 115.0 Circuit 1
line_174	Line	Line SILVERK2 115.0 to SUPERIOR 115.0 Circuit 1
line_175	Line	Line SPURLOCK 115.0 to SUPERIOR 115.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Nam	
line_176	Line	Line SUPERIOR	115.0 to TRASK 115.0 Circuit 1
line_177	Line	Line CARREL	115.0 to GOLDFELD 115.0 Circuit 1
line_178	Line	Line CARREL	115.0 to SPURLOCK 115.0 Circuit 1
line_179	Line	Line REFINETP	115.0 to ELLISOTP 115.0 Circuit 1
line_180	Line	Line MIAMI 4	115.0 to ELLISOTP 115.0 Circuit 1
line_181	Line	Line MIAMI 3	115.0 to PINAL 115.0 Circuit 1
line_182	Line	Line MIAMI 3	115.0 to MIAMI 4 115.0 Circuit 1
line_183	Line	Line STWMTNTP	115.0 to MRMNFLAT 115.0 Circuit 1
line_184	Line	Line STWMTNTP	115.0 to STEWMTN 115.0 Circuit 1
line_185	Line	Line MESQUITE	230.0 to C643T 230.0 Circuit 1
line_186	Line	Line MESQUITE	230.0 to C643T 230.0 Circuit 2
line_187	Line	Line AGUAFRIA	230.0 to WESTWNGW 230.0 Circuit 1
line_188	Line	Line AGUAFRIA	230.0 to ALEXANDR 230.0 Circuit 1
line_189	Line	Line AGUAFRIA	230.0 to WHITETNK 230.0 Circuit 1
line_190	Line	Line ANDERSON	230.0 to KYR-EAST 230.0 Circuit 1
line_191	Line	Line BRANDOW	230.0 to KYR-EAST 230.0 Circuit 1
line_192	Line	Line BRANDOW	230.0 to PAPAGOBT 230.0 Circuit 1
line_193	Line	Line BRANDOW	230.0 to WARD 230.0 Circuit 2
line_194	Line	Line BRANDOW	230.0 to WARD 230.0 Circuit 4
line_195	Line	Line CORBELL	230.0 to KYR-EAST 230.0 Circuit 1
line_196	Line	Line SCHRADER	230.0 to SANTAN 230.0 Circuit 3
line_197	Line	Line SCHRADER	230.0 to SANTAN 230.0 Circuit 2
line_198	Line	Line KYR-EAST	230.0 to SCHRADER 230.0 Circuit 1
line_199	Line	Line ORME 2	230.0 to ANDERSON 230.0 Circuit 1
line_200	Line	Line ORME 2	230.0 to ANDERSON 230.0 Circuit 2
line_201	Line	Line ORME 2	230.0 to RUDD 230.0 Circuit 1
line_202	Line	Line ORME 2	230.0 to RUDD 230.0 Circuit 2
line_203	Line	Line PAPAGOBT	230.0 to KYR-EAST 230.0 Circuit 1
line_204	Line	Line PAPAGOBT	230.0 to PINPKSRP 230.0 Circuit 1
line_205	Line	Line PINPKSRP	230.0 to BRANDOW 230.0 Circuit 1
line_206	Line	Line PINPKSRP	230.0 to BRANDOW 230.0 Circuit 2
line_207	Line	Line ROGERS	230.0 to THUNDRST 230.0 Circuit 1
line_208	Line	Line ROGERS	230.0 to ROGSWAPA 230.0 Circuit 1
line_209	Line	Line ROGERS	230.0 to ROGSWAPA 230.0 Circuit 2
line_210	Line	Line SANTAN	230.0 to CORBELL 230.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_211	Line	Line SANTAN 230.0 to THUNDRST 230.0 Circuit 1
line_212	Line	Line PINAL_C 230.0 to DBG 230.0 Circuit 1
line_213	Line	Line PINAL_C 230.0 to RANDOLPH 230.0 Circuit 1
line_214	Line	Line SCHRADER 230.0 to SANTAN 230.0 Circuit 1
line_215	Line	Line SILVERKG 230.0 to GOLDFELD 230.0 Circuit 1
line_216	Line	Line THUNDRST 230.0 to GOLDFELD 230.0 Circuit 1
line_217	Line	Line THUNDRST 230.0 to GOLDFELD 230.0 Circuit 2
line_218	Line	Line BROWNING 230.0 to SANTAN 230.0 Circuit 1
line_219	Line	Line BROWNING 230.0 to DINOSAUR 230.0 Circuit 1
line_220	Line	Line BROWNING 230.0 to RANDOLPH 230.0 Circuit 1
line_221	Line	Line ABEL 230.0 to DINOSAUR 230.0 Circuit 1
line_222	Line	Line ABEL 230.0 to RANDOLPH 230.0 Circuit 1
line_223	Line	Line RUDD 230.0 to WPHXAPSS 230.0 Circuit 1
line_224	Line	Line RUDD 230.0 to PLMVLY 230.0 Circuit 1
line_225	Line	Line RUDD 230.0 to WHITETNK 230.0 Circuit 1
line_226	Line	Line DBG 230.0 to CASGRAPS 230.0 Circuit 1
line_227	Line	Line ANDERSON 69.0 to RIVERSI4 69.0 Circuit 1
line_228	Line	Line ANDERSON 69.0 to ANDERSRS 69.0 Circuit 1
line_229	Line	Line BROADWA2 69.0 to BROADWA3 69.0 Circuit 1
line_230	Line	Line BROADWA2 69.0 to 15.E1.5N 69.0 Circuit 1
line_231	Line	Line BROADWA3 69.0 to BROADWA4 69.0 Circuit 1
line_232	Line	Line BROADWA3 69.0 to JEPSEN 69.0 Circuit 1
line_233	Line	Line BROADWA4 69.0 to RIVERSI2 69.0 Circuit 1
line_234	Line	Line HEARD 1 69.0 to HURLEY 4 69.0 Circuit 1
line_235	Line	Line HEARD $1 \quad 69.0$ to HEARD $2 \quad$ 69.0 Circuit 1
line_236	Line	Line HURLEY 369.0 to HURLEY 4 69.0 Circuit 1
line_237	Line	Line HURLEY $3 \quad 69.0$ to PARKER 69.0 Circuit 1
line_238	Line	Line RIVERSI2 69.0 to RIVERSI3 69.0 Circuit 1
line_239	Line	Line RIVERSI3 69.0 to RIVERSI4 69.0 Circuit 1
line_240	Line	Line RIVERSI3 69.0 to MCREYNO3 69.0 Circuit 1
line_241	Line	Line MICCHIP 69.0 to WILKINS1 69.0 Circuit 1
line_242	Line	Line WEILER 69.0 to 193E2.6N 69.0 Circuit 1
line_243	Line	Line WEILER 69.0 to 195E2.6N 69.0 Circuit 1
line_244	Line	Line WILKINS1 69.0 to WILKINTP 69.0 Circuit 1
line_245	Line	Line WILKINS1 69.0 to 195E0.5N 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_246	Line	Line WILKINS2	69.0 to WILKINTP 69.0 Circuit 1
line_247	Line	Line WILKINS3	69.0 to WILKINS4 69.0 Circuit 1
line_248	Line	Line WILKINS3	69.0 to WILKINTP 69.0 Circuit 1
line_249	Line	Line SINNOTT	69.0 to IRVIN 69.0 Circuit 1
line_250	Line	Line DORMAN	69.0 to MARLEY 69.0 Circuit 1
line_251	Line	Line DORMAN	69.0 to KNOX 69.0 Circuit 1
line_252	Line	Line WILKINS4	69.0 to WILKINTP 69.0 Circuit 1
line_253	Line	Line HURLEY 1	69.0 to JEPSEN 69.0 Circuit 1
line_254	Line	Line HURLEY 1	69.0 to HURLEY 2 69.0 Circuit 1
line_255	Line	Line HURLEY 2	69.0 to HURLEY 3 69.0 Circuit 1
line_256	Line	Line PARKER	69.0 to 15.E1.5N 69.0 Circuit 1
line_257	Line	Line BARTLETT	69.0 to FOOTHILL 69.0 Circuit 1
line_258	Line	Line BARTLETT	69.0 to WILKINS4 69.0 Circuit 1
line_259	Line	Line MARCOS 3	69.0 to MARCOS 4 69.0 Circuit 1
line_260	Line	Line MARCOS 2	69.0 to MARCOS 3 69.0 Circuit 1
line_261	Line	Line MARCOS 2	69.0 to 22.E1.0N 69.0 Circuit 1
line_262	Line	Line SAYLOR 3	69.0 to SAYLOR 2 69.0 Circuit 1
line_263	Line	Line AHWA 1	69.0 to SAYLOR 3 69.0 Circuit 1
line_264	Line	Line AHWA 1	69.0 to AHWA 2 69.0 Circuit 1
line_265	Line	Line BIGSPINN	69.0 to ROE 4 69.0 Circuit 1
line_266	Line	Line BIGSPINN	69.0 to 21.E1.8S 69.0 Circuit 1
line_267	Line	Line CLEMANS1	69.0 to CLEMANS2 69.0 Circuit 1
line_268	Line	Line CLEMANS1	69.0 to 252E1.5S 69.0 Circuit 1
line_269	Line	Line CLEMANS2	69.0 to CLEMANS3 69.0 Circuit 1
line_270	Line	Line CLEMANS2	69.0 to OMEGA 69.0 Circuit 1
line_271	Line	Line CLEMANS3	69.0 to 237E2.0S 69.0 Circuit 1
line_272	Line	Line DISPLAY	69.0 to 237E2.0S 69.0 Circuit 1
line_273	Line	Line FOUNDRY	69.0 to 214E0.5S 69.0 Circuit 1
line_274	Line	Line HIGHLINE	69.0 to 237E2.0S 69.0 Circuit 1
line_275	Line	Line HIGHLINE	69.0 to 22.E2.0S 69.0 Circuit 1
line_276	Line	Line LASSEN 3	69.0 to 195E0.5N 69.0 Circuit 1
line_277	Line	Line MARCOS 4	69.0 to 217E1.5S 69.0 Circuit 1
line_278	Line	Line OWENS 3	69.0 to OWENS 2 69.0 Circuit 1
line_279	Line	Line LASSEN 2	69.0 to LASSEN 3 69.0 Circuit 1
line_280	Line	Line LASSEN 2	69.0 to LASSEN 1 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_281	Line	Line LASSEN $1 \quad 69.0$ to 214E0.5S 69.0 Circuit 1
line_282	Line	Line OWENS 4 69.0 to OWENS 3 69.0 Circuit 1
line_283	Line	Line GILA 2699.0 to GILA 3 69.0 Circuit 1
line_284	Line	Line GILA 2 69.0 to STELLAR 69.0 Circuit 1
line_285	Line	Line GILA 369.0 to GILA 4 69.0 Circuit 1
line_286	Line	Line GILA $3 \quad 69.0$ to 23.E6.0S 69.0 Circuit 1
line_287	Line	Line GILA 4 69.0 to KNOX 69.0 Circuit 1
line_288	Line	Line ROE 1 69.0 to ROE 2 69.0 Circuit 1
line_289	Line	$\begin{array}{llll}\text { Line ROE } & 2 & 69.0 \text { to ROE } & 3 \\ \text { 69.0 Circuit } 1\end{array}$
line_290	Line	Line ROE 2 69.0 to WINSOR 69.0 Circuit 1
line_291	Line	Line ROE 3 69.0 to ROE 4 69.0 Circuit 1
line_292	Line	Line RUPPERS 69.0 to WINSOR 69.0 Circuit 1
line_293	Line	Line RUPPERS 69.0 to MARLEY 69.0 Circuit 1
line_294	Line	Line SAYLOR 1 69.0 to SAYLOR 2 69.0 Circuit 1
line_295	Line	Line SAYLOR $1 \quad 69.0$ to 20.E1.0S 69.0 Circuit 1
line_296	Line	Line HEARD 269.0 to HEARD 3 69.0 Circuit 1
line_297	Line	Line HEARD 3 69.0 to HEARD 4 69.0 Circuit 1
line_298	Line	Line HEARD $4 \quad 69.0$ to 193E2.6N 69.0 Circuit 1
line_299	Line	Line COOK 1 69.0 to COOK 2 69.0 Circuit 1
line_300	Line	Line COOK 1 69.0 to HARMON 69.0 Circuit 1
line_301	Line	Line COOK 2 69.0 to COOK 3 69.0 Circuit 1
line_302	Line	Line COOK 2 69.0 to CORTEZ 2 69.0 Circuit 1
line_303	Line	Line COOK 3 69.0 to SANDERSO 69.0 Circuit 1
line_304	Line	Line GAUCHO $1 \quad 69.0$ to OLIVE 69.0 Circuit 1
line_305	Line	Line GAUCHO $1 \quad 69.0$ to GAUCHO $2 \quad$ 69.0 Circuit 1
line_306	Line	Line GLENN 69.0 to 5.5E9.0N \quad 69.0 Circuit 1
line_307	Line	Line MARYVAL1 69.0 to MARYVAL3 69.0 Circuit 1
line_308	Line	Line MARYVAL3 69.0 to MARYVAL4 69.0 Circuit 1
line_309	Line	Line MARYVAL3 69.0 to 7.5E9.0N 69.0 Circuit 1
line_310	Line	Line MARYVAL4 69.0 to VALENCI3 69.0 Circuit 1
line_311	Line	Line NORTHER1 69.0 to NORTHER2 69.0 Circuit 1
line_312	Line	Line NORTHER2 69.0 to NORTHER3 69.0 Circuit 1
line_313	Line	Line NORTHER3 69.0 to NORTHER4 69.0 Circuit 1
line_314	Line	Line NORTHER4 69.0 to 9.5E13.N 69.0 Circuit 1
line_315	Line	Line WASSER 69.0 to MOORE 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_316	Line	Line WASSER	69.0 to SANDERSO 69.0 Circuit 1
line_317	Line	Line AHWA 2	69.0 to AHWA 3 69.0 Circuit 1
line_318	Line	Line AHWA 3	69.0 to AHWA 4 69.0 Circuit 1
line_319	Line	Line AHWA 4	69.0 to ROE 1 69.0 Circuit 1
line_320	Line	Line ALHAMBR1	69.0 to ALHAMBR2 69.0 Circuit 1
line_321	Line	Line ALHAMBR2	69.0 to BARCELON 69.0 Circuit 1
line_322	Line	Line ALHAMBR2	69.0 to ALHAMBR3 69.0 Circuit 1
line_323	Line	Line ALHAMBR3	69.0 to ALHAMBR4 69.0 Circuit 1
line_324	Line	Line ALHAMBR3	69.0 to WESTWOO4 69.0 Circuit 1
line_325	Line	Line ALHAMBR4	69.0 to ALEXANDR 69.0 Circuit 1
line_326	Line	Line ALTAVIS1	69.0 to ALTAVIS2 69.0 Circuit 1
line_327	Line	Line ALTAVIS2	69.0 to ALTAVIS3 69.0 Circuit 1
line_328	Line	Line ALTAVIS3	69.0 to NORTHER3 69.0 Circuit 1
line_329	Line	Line CORTEZ 1	69.0 to CORTEZ 2 69.0 Circuit 1
line_330	Line	Line CORTEZ 1	69.0 to PRINGLE 69.0 Circuit 1
line_331	Line	Line CORTEZ 2	69.0 to CORTEZ 3 69.0 Circuit 1
line_332	Line	Line CORTEZ 3	69.0 to 9.5E13.N 69.0 Circuit 1
line_333	Line	Line MARLETT1	69.0 to MARLETT2 69.0 Circuit 1
line_334	Line	Line MARLETT1	69.0 to ALEXANDR 69.0 Circuit 1
line_335	Line	Line MARLETT2	69.0 to ALTAVIS1 69.0 Circuit 1
line_336	Line	Line MARLETT2	69.0 to MARLETT3 69.0 Circuit 1
line_337	Line	Line MARLETT3	69.0 to MARLETT4 69.0 Circuit 1
line_338	Line	Line MARLETT4	69.0 to WESTWOO3 69.0 Circuit 1
line_339	Line	Line VALENCI2	69.0 to VALENCI3 69.0 Circuit 1
line_340	Line	Line VALENCI3	69.0 to VALENCI4 69.0 Circuit 1
line_341	Line	Line VALENCI4	69.0 to 8.5E7.5N 69.0 Circuit 1
line_342	Line	Line WESTWOO1	69.0 to VALENCI2 69.0 Circuit 1
line_343	Line	Line WESTWOO1	69.0 to WESTWOO2 69.0 Circuit 1
line_344	Line	Line WESTWOO2	69.0 to WESTWOO3 69.0 Circuit 1
line_345	Line	Line WESTWOO3	69.0 to WESTWOO4 69.0 Circuit 1
line_346	Line	Line PRINGLE	69.0 to ALEXANDR 69.0 Circuit 1
line_347	Line	Line 196E2.5N	69.0 to 195E2.6N 69.0 Circuit 1
line_348	Line	Line 20.E2.7N 6	69.0 to 196E2.5N 69.0 Circuit 1
line_349	Line	Line 20.E2.7N 6	69.0 to 204E4.0N 69.0 Circuit 1
line_350	Line	Line BEELINE1	69.0 to BEELINE2 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_351	Line	Line BEELINE1 69.0 to BRANDOW 69.0 Circuit 1
line_352	Line	Line BEELINE2 69.0 to BEELINE3 69.0 Circuit 1
line_353	Line	Line BEELINE3 69.0 to BEELINE4 69.0 Circuit 1
line_354	Line	Line BEELINE3 69.0 to INDIANB3 69.0 Circuit 1
line_355	Line	Line BEELINE4 69.0 to 195E6.9N 69.0 Circuit 1
line_356	Line	Line CHAMBERS 69.0 to NOBLE 69.0 Circuit 1
line_357	Line	Line CHAMBERS 69.0 to PIMASRP2 69.0 Circuit 1
line_358	Line	Line FLUME 69.0 to STADIUM 69.0 Circuit 1
line_359	Line	Line FLUME 69.0 to 211E4.8N 69.0 Circuit 1
line_360	Line	Line INDIANB1 69.0 to CHAPARRA 69.0 Circuit 1
line_361	Line	Line INDIANB1 69.0 to INDIANB2 69.0 Circuit 1
line_362	Line	Line INDIANB2 69.0 to 22.4E9N \quad 69.0 Circuit 1
line_363	Line	Line INDIANB2 69.0 to INDIANB3 69.0 Circuit 1
line_364	Line	Line PICO 69.0 to TOVREA 69.0 Circuit 1
line_365	Line	Line PICO 69.0 to 195E6.9N 69.0 Circuit 1
line_366	Line	Line PIMASRP2 69.0 to PIMASRP3 69.0 Circuit 1
line_367	Line	Line PIMASRP3 69.0 to CHAPARRA 69.0 Circuit 1
line_368	Line	Line PIMASRP3 69.0 to PIMASRP4 69.0 Circuit 1
line_369	Line	Line TOVREA 69.0 to 211E4.8N 69.0 Circuit 1
line_370	Line	Line ARCADIA1 69.0 to ARCADIA2 69.0 Circuit 1
line_371	Line	Line ARCADIA2 69.0 to ARCADIA3 69.0 Circuit 1
line_372	Line	Line ARCADIA2 69.0 to FALLS 69.0 Circuit 1
line_373	Line	Line ARCADIA3 69.0 to SQUAWPEA 69.0 Circuit 1
line_374	Line	Line ARIZONA2 69.0 to ARIZONA3 69.0 Circuit 1
line_375	Line	Line ARIZONA2 69.0 to INGLESI2 69.0 Circuit 1
line_376	Line	Line ARIZONA3 69.0 to PAPAGOBT 69.0 Circuit 1
line_377	Line	Line ARIZONA3 69.0 to 195E6.9N \quad 69.0 Circuit 1
line_378	Line	Line CEDRSTR1 69.0 to INGLESI1 69.0 Circuit 1
line_379	Line	Line CEDRSTR1 69.0 to CEDRSTR2 69.0 Circuit 1
line_380	Line	Line CROSSCUT 69.0 to 211E4.7N 69.0 Circuit 1
line_381	Line	Line CROSSCUT 69.0 to 20.E4.2N \quad 69.0 Circuit 1
line_382	Line	Line CROSSHYD 69.0 to CROSSCUT 69.0 Circuit 1
line_383	Line	Line FALLS 69.0 to PAPAGOBT 69.0 Circuit 1
line_384	Line	Line INGLESI1 69.0 to INGLESI2 69.0 Circuit 1
line_385	Line	Line INGLESI2 69.0 to INGLESI3 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_386	Line	Line INGLESI3	69.0 to OSBORN 1 69.0 Circuit 1
line_387	Line	Line MADISON	69.0 to SPARTAN 69.0 Circuit 1
line_388	Line	Line MADISON	69.0 to SQUAWTAP 69.0 Circuit 1
line_389	Line	Line OSBORN 1	69.0 to OSBORN 2 69.0 Circuit 1
line_390	Line	Line OSBORN 2	69.0 to OSBORN 3 69.0 Circuit 1
line_391	Line	Line OSBORN 2	69.0 to TAVAN 69.0 Circuit 1
line_392	Line	Line OSBORN 3	69.0 to SPARTAN 69.0 Circuit 1
line_393	Line	Line PERA 69.0	69.0 to 21E7.24N 69.0 Circuit 1
line_394	Line	Line PERA 69.0	69.0 to 211E4.7N 69.0 Circuit 1
line_395	Line	Line SCOTTSDA	69.0 to $22.4 \mathrm{E} 9 \mathrm{~N} \quad$ 69.0 Circuit 1
line_396	Line	Line SCOTTSDA	69.0 to 21E7.25N 69.0 Circuit 1
line_397	Line	Line SQUAWPEA	A 69.0 to SQUAWTAP 69.0 Circuit 1
line_398	Line	Line ALAMEDA1	$1 \quad 69.0$ to ALAMEDA2 69.0 Circuit 1
line_399	Line	Line ALAMEDA1	169.0 to WARD RS 69.0 Circuit 1
line_400	Line	Line ALAMEDA2	2 69.0 to ALAMEDA3 69.0 Circuit 1
line_401	Line	Line ALAMEDA3	369.0 to 22.E1.0N 69.0 Circuit 1
line_402	Line	Line ALAMEDA4	$4 \quad 69.0$ to ALAMEDA3 69.0 Circuit 1
line_403	Line	Line ALAMEDA4	$4 \quad 69.0$ to DOBSON 2 69.0 Circuit 1
line_404	Line	Line BINARY	69.0 to 196E2.5N 69.0 Circuit 1
line_405	Line	Line DOBSON 1	69.0 to DOBSON 2 69.0 Circuit 1
line_406	Line	Line DOBSON 2	69.0 to DOBSON 3 69.0 Circuit 1
line_407	Line	Line DOBSON 3	69.0 to DOBSON 4 69.0 Circuit 1
line_408	Line	Line DOBSON 4	69.0 to WARD RS 69.0 Circuit 1
line_409	Line	Line HOKAM 1	69.0 to MICRO 1 69.0 Circuit 1
line_410	Line	Line HOKAM 1	69.0 to HOKAM $2 \quad$ 69.0 Circuit 1
line_411	Line	Line MICRO 1	69.0 to MICRO 2 69.0 Circuit 1
line_412	Line	Line MICRO 2	69.0 to MICRO 3 69.0 Circuit 1
line_413	Line	Line MICRO 2	69.0 to 25.E3.0N 69.0 Circuit 1
line_414	Line	Line MICRO 3	69.0 to TEMPESRP 69.0 Circuit 1
line_415	Line	Line PICKREL2	69.0 to 20.E2.7N 69.0 Circuit 1
line_416	Line	Line PICKREL2	69.0 to PICKREL3 69.0 Circuit 1
line_417	Line	Line TEMPESRP	69.0 to 247E3.0N 69.0 Circuit 1
line_418	Line	Line UNIVERSI	69.0 to 257E3.0N 69.0 Circuit 1
line_419	Line	Line UNIVERSI	69.0 to 25.E3.0N 69.0 Circuit 1
line_420	Line	Line WARD RS	69.0 to 247E3.0N 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_421	Line	Line WER MUS 69.0 to 195E2.6N 69.0 Circuit 1
line_422	Line	Line PENDERGS 69.0 to TOLBY 69.0 Circuit 1
line_423	Line	Line PENDERGS 69.0 to ROVEY 69.0 Circuit 1
line_424	Line	Line BROOKS 69.0 to SEARGANT 69.0 Circuit 1
line_425	Line	Line CARTWRI2 69.0 to CARTWRI3 69.0 Circuit 1
line_426	Line	Line CARTWRI2 69.0 to 8.4E7.5N \quad 69.0 Circuit 1
line_427	Line	Line CARTWRI3 69.0 to CARTWRI4 69.0 Circuit 1
line_428	Line	Line CARTWRI3 69.0 to 8.0E7.5N 69.0 Circuit 1
line_429	Line	Line CARTWRI4 69.0 to ISAAC 69.0 Circuit 1
line_430	Line	Line CHRISTY 69.0 to ORME RS 69.0 Circuit 1
line_431	Line	Line CHRISTY 69.0 to 8.4E7.5N 69.0 Circuit 1
line_432	Line	Line EVANS 69.0 to SHEELY 69.0 Circuit 1
line_433	Line	Line EVANS 69.0 to ORME RS 69.0 Circuit 1
line_434	Line	Line ISAAC 69.0 to 9.0E3.0N 69.0 Circuit 1
line_435	Line	Line KAY 69.0 to ORME RS 69.0 Circuit 1
line_436	Line	Line KAY 69.0 to 9.0E3.0N 69.0 Circuit 1
line_437	Line	Line SHAW 69.0 to 8.0E7.5N 69.0 Circuit 1
line_438	Line	Line SHEELY 69.0 to 5.5E8.5N 69.0 Circuit 1
line_439	Line	Line SOUTHERN 69.0 to 8.5E1.0N 69.0 Circuit 1
line_440	Line	Line SOUTHERN 69.0 to MCREYNO1 69.0 Circuit 1
line_441	Line	Line TRESRIOS 69.0 to STOKER 69.0 Circuit 1
line_442	Line	Line UNIFIED 69.0 to 4.0E1.0N 69.0 Circuit 1
line_443	Line	Line CHEATHAM 69.0 to IRVIN 69.0 Circuit 1
line_444	Line	Line CHEATHAM 69.0 to 7.0E1.0N 69.0 Circuit 1
line_445	Line	Line COWDEN 69.0 to 1.0E3.9N 69.0 Circuit 1
line_446	Line	Line BURTON 69.0 to COWDEN 69.0 Circuit 1
line_447	Line	Line BURTON 69.0 to STOKER 69.0 Circuit 1
line_448	Line	Line HANSON 69.0 to 1.0E3.9N 69.0 Circuit 1
line_449	Line	Line HANSON 69.0 to WHITETNK 69.0 Circuit 1
line_450	Line	Line CASHION2 69.0 to OPPORTUN 69.0 Circuit 1
line_451	Line	Line CASHION2 69.0 to CASHION3 69.0 Circuit 1
line_452	Line	Line CASHION3 69.0 to CASHION4 69.0 Circuit 1
line_453	Line	Line CASHION4 69.0 to 1.0E3.9N 69.0 Circuit 1
line_454	Line	Line CASHION4 69.0 to CASHION5 69.0 Circuit 1
line_455	Line	Line CASHION5 69.0 to 2.2E4.0N 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_456	Line	Line COLLIER	69.0 to OPPORTUN 69.0 Circuit 1
line_457	Line	Line CONOVALO	69.0 to BROOKS 69.0 Circuit 1
line_458	Line	Line CONOVALO	69.0 to SUNSET 3 69.0 Circuit 1
line_459	Line	Line GRASMOE1	69.0 to GRASMOE2 69.0 Circuit 1
line_460	Line	Line GRASMOE1	69.0 to WELBORN2 69.0 Circuit 1
line_461	Line	Line GRASMOE2	69.0 to GRASMOE3 69.0 Circuit 1
line_462	Line	Line GRASMOE2	69.0 to SUNSET 4 69.0 Circuit 1
line_463	Line	Line GRASMOE3	69.0 to 5.5E8.5N 69.0 Circuit 1
line_464	Line	Line STOKER	69.0 to 2.2E4.0N 69.0 Circuit 1
line_465	Line	Line SUNSET 2	69.0 to SUNSET 3 69.0 Circuit 1
line_466	Line	Line SUNSET 2	69.0 to WHITETNK 69.0 Circuit 1
line_467	Line	Line SUNSET 3	69.0 to SUNSET 4 69.0 Circuit 1
line_468	Line	Line TOLBY	69.0 to WHITETNK 69.0 Circuit 1
line_469	Line	Line WELBORN3	69.0 to WELBORN2 69.0 Circuit 1
line_470	Line	Line W.CONTN	69.0 to 2.2E4.0N 69.0 Circuit 1
line_471	Line	Line MONUMENT	T 69.0 to TRESRIOS 69.0 Circuit 1
line_472	Line	Line MONUMENT	- 69.0 to UNIFIED 69.0 Circuit 1
line_473	Line	Line ROVEY	69.0 to WELBORN3 69.0 Circuit 1
line_474	Line	Line BASELIN1	69.0 to BASELIN2 69.0 Circuit 1
line_475	Line	Line BASELIN1	69.0 to GREER 69.0 Circuit 1
line_476	Line	Line BASELIN2	69.0 to BASELIN3 69.0 Circuit 1
line_477	Line	Line BASELIN3	69.0 to BASELIN4 69.0 Circuit 1
line_478	Line	Line BASELIN3	69.0 to 36.E1.0N 69.0 Circuit 1
line_479	Line	Line BASELIN3	69.0 to 358E1.0S 69.0 Circuit 1
line_480	Line	Line CITRUS 0	69.0 to CITRUS 2 69.0 Circuit 1
line_481	Line	Line CITRUS 0	69.0 to HUNT 69.0 Circuit 1
line_482	Line	Line CITRUS 2	69.0 to CITRUS 3 69.0 Circuit 1
line_483	Line	Line CITRUS 3	69.0 to CITRUS 4 69.0 Circuit 1
line_484	Line	Line CITRUS 3	69.0 to WORTMAN 69.0 Circuit 1
line_485	Line	Line CITRUS 4	69.0 to HUMPHREY 69.0 Circuit 1
line_486	Line	Line COOPER	69.0 to TURPEN 69.0 Circuit 1
line_487	Line	Line CRISMON	69.0 to GERMANN 69.0 Circuit 1
line_488	Line	Line GERMANN	69.0 to MICROMIL 69.0 Circuit 1
line_489	Line	Line MOODY 1	69.0 to MOODY 2 69.0 Circuit 1
line_490	Line	Line MOODY 1	69.0 to CLARK 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_491	Line	Line MOODY 2	69.0 to MOODY 3 69.0 Circuit 1
line_492	Line	Line MOODY 2	69.0 to BOGLE 69.0 Circuit 1
line_493	Line	Line MOODY 3	69.0 to MOODY 4 69.0 Circuit 1
line_494	Line	Line MOODY 3	69.0 to ROHRIG 69.0 Circuit 1
line_495	Line	Line MOODY 4	69.0 to 36.E5.3S 69.0 Circuit 1
line_496	Line	Line KEMPTON1	69.0 to KEMPTON2 69.0 Circuit 1
line_497	Line	Line KEMPTON2	69.0 to KEMPTON3 69.0 Circuit 1
line_498	Line	Line KEMPTON2	69.0 to 295E1.0S 69.0 Circuit 1
line_499	Line	Line KEMPTON3	69.0 to KEMPTON4 69.0 Circuit 1
line_500	Line	Line KEMPTON4	69.0 to LACY 69.0 Circuit 1
line_501	Line	Line LACY 6	69.0 to SANTAN 69.0 Circuit 1
line_502	Line	Line NEELY	69.0 to 28.E4.0S 69.0 Circuit 1
line_503	Line	Line NEELY	69.0 to 29.E2.0S 69.0 Circuit 1
line_504	Line	Line QUAIL 1	69.0 to QUAIL 2 69.0 Circuit 1
line_505	Line	Line QUAIL 1	69.0 to ABEL 69.0 Circuit 1
line_506	Line	Line QUAIL 2	69.0 to QUAIL 3 69.0 Circuit 1
line_507	Line	Line QUAIL 3	69.0 to QUAIL 4 69.0 Circuit 1
line_508	Line	Line QUEENCRE	69.0 to 42.E9.0S 69.0 Circuit 1
line_509	Line	Line RITTENHO	69.0 to 41.E9.0S 69.0 Circuit 1
line_510	Line	Line RITTENHO	69.0 to ROHRIG 69.0 Circuit 1
line_511	Line	Line WORTMAN	69.0 to GREENFLD 69.0 Circuit 1
line_512	Line	Line SHULTZ 1	69.0 to SHULTZ 2 69.0 Circuit 1
line_513	Line	Line SHULTZ 1	69.0 to 28.E5.2S 69.0 Circuit 1
line_514	Line	Line SHULTZ 2	69.0 to SHULTZ 3 69.0 Circuit 1
line_515	Line	Line SHULTZ 3	69.0 to SHULTZ 4 69.0 Circuit 1
line_516	Line	Line TENNEY	69.0 to SHULTZ 4 69.0 Circuit 1
line_517	Line	Line WILLIAMS	69.0 to 36.E5.3S 69.0 Circuit 1
line_518	Line	Line AF-NORTH	69.0 to HARMON 69.0 Circuit 1
line_519	Line	Line AF-NORTH	69.0 to NORTHER2 69.0 Circuit 1
line_520	Line	Line AF-NORTH	69.0 to OLIVE 69.0 Circuit 1
line_521	Line	Line AF-STEAM	69.0 to BARCELON 69.0 Circuit 1
line_522	Line	Line AF-STEAM	69.0 to GLENN 69.0 Circuit 1
line_523	Line	Line AF-STEAM	69.0 to MARYVAL1 69.0 Circuit 1
line_524	Line	Line AF-STEAM	69.0 to MOORE 69.0 Circuit 1
line_525	Line	Line AF-STEAM	69.0 to AF-NORTH 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_526	Line	Line AF-STEAM	69.0 to AF-NORTH 69.0 Circuit 2
line_527	Line	Line KYRENEGT	69.0 to OWENS 4 69.0 Circuit 1
line_528	Line	Line KYRENEGT	69.0 to 214E0.5S 69.0 Circuit 1
line_529	Line	Line KYRENEGT	69.0 to KYRENEST 69.0 Circuit 1
line_530	Line	Line KYRENEGT	69.0 to 21.E1.0S 69.0 Circuit 1
line_531	Line	Line KYRENEGT	69.0 to 21.E1.8S 69.0 Circuit 1
line_532	Line	Line KYRENEGT	69.0 to 22.E2.0S 69.0 Circuit 1
line_533	Line	Line KYRENEGT	69.0 to 217E1.5S 69.0 Circuit 1
line_534	Line	Line SANTAN	69.0 to GREENFLD 69.0 Circuit 1
line_535	Line	Line SANTAN	69.0 to TENNEY 69.0 Circuit 1
line_536	Line	Line SANTAN	69.0 to FREESTON 69.0 Circuit 1
line_537	Line	Line SANTAN	69.0 to ZIMMERMN 69.0 Circuit 1
line_538	Line	Line SANTAN	69.0 to GREER 69.0 Circuit 1
line_539	Line	Line ANDERSRS	69.0 to FOOTHILL 69.0 Circuit 1
line_540	Line	Line ANDERSRS	69.0 to SINNOTT 69.0 Circuit 1
line_541	Line	Line ANDERSRS	69.0 to 15.E1.5N 69.0 Circuit 1
line_542	Line	Line ANDERSRS	69.0 to MCREYNO2 69.0 Circuit 1
line_543	Line	Line SCHRADER	69.0 to DELTA 3 69.0 Circuit 1
line_544	Line	Line SCHRADER	69.0 to SANCARL2 69.0 Circuit 1
line_545	Line	Line SCHRADER	69.0 to FERRIS 69.0 Circuit 1
line_546	Line	Line BRANDOW	69.0 to 204E4.0N 69.0 Circuit 1
line_547	Line	Line BRANDOW	69.0 to NOBLE 69.0 Circuit 1
line_548	Line	Line BRANDOW	69.0 to STADIUM 69.0 Circuit 1
line_549	Line	Line BRANDOW	69.0 to WARD RS 69.0 Circuit 1
line_550	Line	Line BRANDOW	69.0 to WARD RS 69.0 Circuit 2
line_551	Line	Line CORBELRS	69.0 to CORBELL 69.0 Circuit 1
line_552	Line	Line CORBELRS	69.0 to MANOR 69.0 Circuit 1
line_553	Line	Line CORBELRS	69.0 to 252E1.5S 69.0 Circuit 1
line_554	Line	Line CORBELRS	69.0 to WOOD 2 69.0 Circuit 1
line_555	Line	Line CORBELRS	69.0 to WOOD 3 69.0 Circuit 1
line_556	Line	Line CORBELRS	69.0 to 28.E2.0S 69.0 Circuit 1
line_557	Line	Line CORBELRS	69.0 to 28.E1.5S 69.0 Circuit 1
line_558	Line	Line ORME RS	69.0 to SHAW 69.0 Circuit 1
line_559	Line	Line ORME RS	69.0 to 4.0E1.0N 69.0 Circuit 1
line_560	Line	Line ORME RS	69.0 to SEARGANT 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_561	Line	Line PAPAGOBT 69.0 to 21E7.24N 69.0 Circuit 1
line_562	Line	Line PAPAGOBT 69.0 to 21E7.25N 69.0 Circuit 1
line_563	Line	Line PAPAGOBT 69.0 to ARCADIA1 69.0 Circuit 1
line_564	Line	Line PAPAGOBT 69.0 to TAVAN 69.0 Circuit 1
line_565	Line	Line ROGERS 69.0 to 275E4.0N 69.0 Circuit 1
line_566	Line	Line ROGERS 69.0 to RICE 4 69.0 Circuit 1
line_567	Line	Line ROGERS 69.0 to STAPLEY3 69.0 Circuit 1
line_568	Line	Line ROGERS 69.0 to LEHI 1 69.0 Circuit 1
line_569	Line	Line ROGERS 69.0 to 265E3.0N \quad 69.0 Circuit 1
line_570	Line	Line THUNDRST 69.0 to 37.E118N 69.0 Circuit 1
line_571	Line	Line THUNDRST 69.0 to SALTGILA 69.0 Circuit 1
line_572	Line	Line THUNDRST 69.0 to SGNLBUT1 69.0 Circuit 1
line_573	Line	Line WARD 69.0 to WARD RS 69.0 Circuit 1
line_574	Line	Line WARD 69.0 to 257E3.0N 69.0 Circuit 1
line_575	Line	Line WHITETNK 69.0 to COLLIER 69.0 Circuit 1
line_576	Line	Line KNOX 69.0 to ROE 3 69.0 Circuit 1
line_577	Line	Line OWENS $2 \quad 69.0$ to STELLAR 69.0 Circuit 1
line_578	Line	Line CASEY 69.0 to 35.E3.0S 69.0 Circuit 1
line_579	Line	Line FREESTON 69.0 to TURPEN 69.0 Circuit 1
line_580	Line	Line ZIMMERMN 69.0 to KEMPTON1 69.0 Circuit 1
line_581	Line	Line 41.E9.0S 69.0 to 42.E9.0S 69.0 Circuit 1
line_582	Line	Line WATKINS 69.0 to 436E15.S 69.0 Circuit 1
line_583	Line	Line FLORENCE 69.0 to QUAIL 3 69.0 Circuit 1
line_584	Line	Line POTTER 69.0 to BASELIN4 69.0 Circuit 1
line_585	Line	Line POTTER 69.0 to BROWNING 69.0 Circuit 1
line_586	Line	Line COOLEY 69.0 to SANTAN 69.0 Circuit 1
line_587	Line	Line COOLEY 69.0 to CASEY 69.0 Circuit 1
line_588	Line	Line COOLEY 69.0 to 35.E3.0S 69.0 Circuit 1
line_589	Line	Line COOLEY 69.0 to 36.E5.3S 69.0 Circuit 1
line_590	Line	Line BOGLE 69.0 to RITTENHO 69.0 Circuit 1
line_591	Line	Line HUMPHREY 69.0 to SANCARL4 69.0 Circuit 1
line_592	Line	Line 274E5.2S 69.0 to SHULTZ 3 69.0 Circuit 1
line_593	Line	Line TWEEDY 69.0 to SCHRADER 69.0 Circuit 1
line_594	Line	Line 23.E6.0S 69.0 to 244E6.0S 69.0 Circuit 1
line_595	Line	Line DELTA 369.0 to DELTA 4 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_596	Line	Line DELTA 469.0 to DELTA 5 69.0 Circuit 1
line_597	Line	Line DELTA 4 69.0 to JONES 69.0 Circuit 1
line_598	Line	Line ROTH 69.0 to DELTA $5 \quad$ 69.0 Circuit 1
line_599	Line	Line ROTH 69.0 to SYNERGY 69.0 Circuit 1
line_600	Line	Line SANCARL1 69.0 to COOPER 69.0 Circuit 1
line_601	Line	Line SANCARL1 69.0 to SANCARL2 69.0 Circuit 1
line_602	Line	Line SANCARL2 69.0 to SANCARL3 69.0 Circuit 1
line_603	Line	Line SANCARL3 69.0 to SANCARL4 69.0 Circuit 1
line_604	Line	Line LUNA 69.0 to MCPHERSO 69.0 Circuit 1
line_605	Line	Line SUNLAKES 69.0 to SCHRADER 69.0 Circuit 1
line_606	Line	Line SUNLAKES 69.0 to HOOPES 69.0 Circuit 1
line_607	Line	Line WILLIS 69.0 to SANCARL3 69.0 Circuit 1
line_608	Line	Line HOOPES 69.0 to SCHRADER 69.0 Circuit 1
line_609	Line	Line HOOPES 69.0 to SYNERGY 69.0 Circuit 1
line_610	Line	Line HOOPES 69.0 to SYNERGY 69.0 Circuit 2
line_611	Line	Line PACE 69.0 to SCHRADER 69.0 Circuit 1
line_612	Line	Line PACE 69.0 to WILLIS 69.0 Circuit 1
line_613	Line	Line AMERICA 69.0 to CENTENNI 69.0 Circuit 1
line_614	Line	Line 23.E5.4S 69.0 to 23.E6.0S 69.0 Circuit 1
line_615	Line	Line 247E5.2S 69.0 to JONES 69.0 Circuit 1
line_616	Line	Line 247E5.2S 69.0 to 245E6.0S 69.0 Circuit 1
line_617	Line	Line 244E6.0S 69.0 to 245E6.0S \quad 69.0 Circuit 1
line_618	Line	Line AIRPARK 69.0 to 23.E5.4S 69.0 Circuit 1
line_619	Line	Line CORBELL 69.0 to GRISWOLD 69.0 Circuit 1
line_620	Line	Line HANGER 1 69.0 to HANGER 2 69.0 Circuit 1
line_621	Line	Line HANGER $1 \quad 69.0$ to HOUSTON 69.0 Circuit 1
line_622	Line	Line HANGER 2 69.0 to HANGER 3 69.0 Circuit 1
line_623	Line	Line HANGER $2 \quad 69.0$ to 252E1.5S 69.0 Circuit 1
line_624	Line	Line HANGER $3 \quad 69.0$ to HANGER 4 69.0 Circuit 1
line_625	Line	Line HANGER 4 69.0 to GRISWOLD 69.0 Circuit 1
line_626	Line	Line HOUSTON 69.0 to 25.E3.4S 69.0 Circuit 1
line_627	Line	Line LINOX 69.0 to CENTENNI 69.0 Circuit 1
line_628	Line	Line LINOX 69.0 to 244E6.0S 69.0 Circuit 1
line_629	Line	Line MANOR 69.0 to 25.E3.4S 69.0 Circuit 1
line_630	Line	Line MEMORY 69.0 to 247E5.2S 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_631	Line	Line MILLER 1	69.0 to MILLER 2 69.0 Circuit 1
line_632	Line	Line MILLER 1	69.0 to 25.E3.5S 69.0 Circuit 1
line_633	Line	Line MILLER 2	69.0 to AMERICA 69.0 Circuit 1
line_634	Line	Line MILLER 2	69.0 to MILLER 3 69.0 Circuit 1
line_635	Line	Line MILLER 3	69.0 to MILLER 4 69.0 Circuit 1
line_636	Line	Line MILLER 4	69.0 to 247E5.2S 69.0 Circuit 1
line_637	Line	Line WAFER	69.0 to WOOD 1 69.0 Circuit 1
line_638	Line	Line WAFER	69.0 to 25.E3.5S 69.0 Circuit 1
line_639	Line	Line AUSTIN	69.0 to 23.E5.4S 69.0 Circuit 1
line_640	Line	Line AUSTIN	69.0 to HOUSTON 69.0 Circuit 1
line_641	Line	Line CEDRSTR2	69.0 to 20.E4.2N 69.0 Circuit 1
line_642	Line	Line GAUCHO 2	69.0 to GAUCHO 3 69.0 Circuit 1
line_643	Line	Line GAUCHO 3	69.0 to GAUCHO 4 69.0 Circuit 1
line_644	Line	Line EVERGREE	69.0 to PIMASRP4 69.0 Circuit 1
line_645	Line	Line EVERGREE	69.0 to 295E8.4N 69.0 Circuit 1
line_646	Line	Line FOUNTAIN	69.0 to 37.E118N 69.0 Circuit 1
line_647	Line	Line FOUNTAIN	69.0 to GLENBROO 69.0 Circuit 1
line_648	Line	Line GLENBROO	69.0 to 34E17N 69.0 Circuit 1
line_649	Line	Line SPEEDWAY	69.0 to 295E8.4N 69.0 Circuit 1
line_650	Line	Line VERDESRP	69.0 to 37.E118N 69.0 Circuit 1
line_651	Line	Line WHEELER	69.0 to MCMULLIN 69.0 Circuit 1
line_652	Line	Line WHEELER	69.0 to 34E17N \quad 69.0 Circuit 1
line_653	Line	Line MCMULLIN	69.0 to 295E8.4N 69.0 Circuit 1
line_654	Line	Line MCMULLIN	69.0 to FOUNTAIN 69.0 Circuit 1
line_655	Line	Line GAUCHO 4	69.0 to 9.5E13.N 69.0 Circuit 1
line_656	Line	Line HOKAM 2	69.0 to HOKAM 3 69.0 Circuit 1
line_657	Line	Line HOKAM 3	69.0 to HOKAM 4 69.0 Circuit 1
line_658	Line	Line HOKAM 4	69.0 to HOKAM $5 \quad$ 99.0 Circuit 1
line_659	Line	Line 36.E1.0N 6	69.0 to 36.E2.0N 69.0 Circuit 1
line_660	Line	Line BASSHAM	69.0 to THUNDRST 69.0 Circuit 1
line_661	Line	Line BUCKHOR1	69.0 to BUCKHOR2 69.0 Circuit 1
line_662	Line	Line BUCKHOR1	69.0 to LEHI 3 69.0 Circuit 1
line_663	Line	Line BUCKHOR2	69.0 to BUCKHOR3 69.0 Circuit 1
line_664	Line	Line BUCKHOR3	69.0 to BUCKHOR4 69.0 Circuit 1
line_665	Line	Line BUCKHOR4	69.0 to BOONE 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_666	Line	Line CHOPPER	69.0 to BASSHAM 69.0 Circuit 1
line_667	Line	Line CHOPPER	69.0 to FALCON 1 69.0 Circuit 1
line_668	Line	Line FALCON 3	69.0 to FALCON 4 69.0 Circuit 1
line_669	Line	Line LEISURE1	69.0 to LEISURE2 69.0 Circuit 1
line_670	Line	Line LEISURE2	69.0 to 36.E1.0N 69.0 Circuit 1
line_671	Line	Line LEISURE2	69.0 to LEISURE3 69.0 Circuit 1
line_672	Line	Line LEISURE3	69.0 to THUNDRST 69.0 Circuit 1
line_673	Line	Line LEISURE3	69.0 to LEISURE4 69.0 Circuit 1
line_674	Line	Line LEISURE4	69.0 to VENTURE 69.0 Circuit 1
line_675	Line	Line LEISURE4	69.0 to 34.3E2.N 69.0 Circuit 1
line_676	Line	Line TRYON	69.0 to LEISURE1 69.0 Circuit 1
line_677	Line	Line TRYON	69.0 to 325E2.0N 69.0 Circuit 1
line_678	Line	Line VENTURE	69.0 to 325E2.0N 69.0 Circuit 1
line_679	Line	Line VENTURE	69.0 to 34.3E2.N 69.0 Circuit 1
line_680	Line	Line APACHE	69.0 to THUNDRST 69.0 Circuit 1
line_681	Line	Line APACHE	69.0 to 36.E2.0N 69.0 Circuit 1
line_682	Line	Line BOONE	69.0 to THUNDRST 69.0 Circuit 1
line_683	Line	Line HOKAM 5	69.0 to DOBSON 3 69.0 Circuit 1
line_684	Line	Line PICKREL3	69.0 to 22.E1.0N 69.0 Circuit 1
line_685	Line	Line RICE 2	69.0 to RICE 3 69.0 Circuit 1
line_686	Line	Line RICE 3	69.0 to RICE 4 69.0 Circuit 1
line_687	Line	Line CULBERTS	69.0 to VALVIST3 69.0 Circuit 1
line_688	Line	Line CULBERTS	69.0 to HUGHES 69.0 Circuit 1
line_689	Line	Line FAIRWAY	69.0 to 275E4.0N 69.0 Circuit 1
line_690	Line	Line FAIRWAY	69.0 to HUGHES 69.0 Circuit 1
line_691	Line	Line LEHI 2	69.0 to LEHI 3 69.0 Circuit 1
line_692	Line	Line LEHI 2	69.0 to STAPLEY1 69.0 Circuit 1
line_693	Line	Line LEHI 3	69.0 to LEHI 4 69.0 Circuit 1
line_694	Line	Line LEHI 4	69.0 to VALVIST2 69.0 Circuit 1
line_695	Line	Line REED 1	69.0 to REED 2 69.0 Circuit 1
line_696	Line	Line REED 1	69.0 to 325E2.0N 69.0 Circuit 1
line_697	Line	Line REED 2	69.0 to THUNDRST 69.0 Circuit 1
line_698	Line	Line REED 2	69.0 to REED 3 69.0 Circuit 1
line_699	Line	Line REED 3	69.0 to 29.E0.9N 69.0 Circuit 1
line_700	Line	Line RICE 1	69.0 to RICE 2 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_701	Line	Line RICE $1 \quad 69.0$ to 29.E0.9N 69.0 Circuit 1
line_702	Line	Line SOCONHYD 69.0 to VALVIST2 69.0 Circuit 1
line_703	Line	Line STAPLEY1 69.0 to STAPLEY2 69.0 Circuit 1
line_704	Line	Line VALVIST1 69.0 to VALVIST2 69.0 Circuit 1
line_705	Line	Line VALVIST2 69.0 to VALVIST3 69.0 Circuit 1
line_706	Line	Line WOOD 1 69.0 to WOOD 2 69.0 Circuit 1
line_707	Line	Line WOOD 269.0 to WOOD 3 69.0 Circuit 1
line_708	Line	Line WOOD 369.0 to 28.E1.5S 69.0 Circuit 1
line_709	Line	Line KIRK 69.0 to THUNDRST 69.0 Circuit 1
line_710	Line	Line KIRK 69.0 to CLUFF 69.0 Circuit 1
line_711	Line	Line EALY 269.0 to EALY 4 69.0 Circuit 1
line_712	Line	Line NOACK 69.0 to THUNDRST 69.0 Circuit 1
line_713	Line	Line NOACK 69.0 to SGNLBUT2 69.0 Circuit 1
line_714	Line	Line SEATON 1 69.0 to MCCOY 69.0 Circuit 1
line_715	Line	Line SEATON 1 69.0 to SGNLBUT3 69.0 Circuit 1
line_716	Line	Line SHANNON 69.0 to SUPERST4 69.0 Circuit 1
line_717	Line	Line SHANNON 69.0 to SGNLBUT4 69.0 Circuit 1
line_718	Line	Line SGNLBUT1 69.0 to SGNLBUT2 69.0 Circuit 1
line_719	Line	Line SUPERST1 69.0 to SUPERST2 69.0 Circuit 1
line_720	Line	Line SUPERST2 69.0 to SUPERST3 69.0 Circuit 1
line_721	Line	Line SUPERST3 69.0 to SUPERST4 69.0 Circuit 1
line_722	Line	Line CAMERON1 69.0 to CLUFF 69.0 Circuit 1
line_723	Line	Line CAMERON1 69.0 to SUPERST3 69.0 Circuit 1
line_724	Line	Line MCCOY 69.0 to SAGE 1 69.0 Circuit 1
line_725	Line	Line GLENBR02 69.0 to GLENBROO 69.0 Circuit 1
line_726	Line	Line GLENBR02 69.0 to PINKERTO 69.0 Circuit 1
line_727	Line	Line STAPLEY2 69.0 to STAPLEY3 69.0 Circuit 1
line_728	Line	$\begin{array}{llll}\text { Line LEHI } & 1 & 69.0 \text { to LEHI } 2 \quad \text { 69.0 Circuit } 1\end{array}$
line_729	Line	Line SGNLBUT2 69.0 to SGNLBUT3 69.0 Circuit 1
line_730	Line	Line SGNLBUT3 69.0 to SGNLBUT4 69.0 Circuit 1
line_731	Line	Line SAGE 2 69.0 to SAGE 3 69.0 Circuit 1
line_732	Line	Line SAGE 1 69.0 to SAGE 2 69.0 Circuit 1
line_733	Line	Line SAGE 3 69.0 to SAGE 4 69.0 Circuit 1
line_734	Line	Line SAGE 4 69.0 to THUNDRST 69.0 Circuit 1
line_735	Line	$\begin{array}{llll}\text { Line EALY } & 1 & 69.0 \text { to EALY } 2 & \text { 69.0 Circuit } 1\end{array}$

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_736	Line	Line EALY 1	69.0 to SEATON 1 69.0 Circuit 1
line_737	Line	Line EALY 4	69.0 to SUPERST1 69.0 Circuit 1
line_738	Line	Line FALCON 1	69.0 to FALCON 3 69.0 Circuit 1
line_739	Line	Line FALCON 4	69.0 to VALVIST1 69.0 Circuit 1
line_740	Line	Line FINLEY	69.0 to 29.E1.0S 69.0 Circuit 1
line_741	Line	Line FINLEY	69.0 to 29.E0.9N 69.0 Circuit 1
line_742	Line	Line 34.3E2.N	69.0 to 36.E2.0N 69.0 Circuit 1
line_743	Line	Line 257E3.0N	69.0 to 265E3.0N 69.0 Circuit 1
line_744	Line	Line 25.E3.0N	69.0 to 247E3.0N 69.0 Circuit 1
line_745	Line	Line 211E4.8N	69.0 to 211E4.7N 69.0 Circuit 1
line_746	Line	Line 20.E4.2N	69.0 to 204E4.0N 69.0 Circuit 1
line_747	Line	Line 8.5E1.0N	69.0 to 9.0E3.0N 69.0 Circuit 1
line_748	Line	Line 7.0E1.0N	69.0 to 8.5E1.0N 69.0 Circuit 1
line_749	Line	Line 4.0E1.0N	69.0 to 7.0E1.0N 69.0 Circuit 1
line_750	Line	Line 5.5E9.0N	69.0 to 7.5E9.0N 69.0 Circuit 1
line_751	Line	Line 8.0E7.6N	69.0 to 8.0E7.5N 69.0 Circuit 1
line_752	Line	Line 7.5E9.0N	69.0 to 8.0E7.6N 69.0 Circuit 1
line_753	Line	Line 8.5E7.5N	69.0 to 8.0E7.6N 69.0 Circuit 1
line_754	Line	Line 195E0.5N	69.0 to 20.E1.0S 69.0 Circuit 1
line_755	Line	Line 20.E1.0S	69.0 to 21.E1.0S 69.0 Circuit 1
line_756	Line	Line 21.E1.0S	69.0 to 21.E1.8S 69.0 Circuit 1
line_757	Line	Line 25.E3.5S	69.0 to 25.E3.4S 69.0 Circuit 1
line_758	Line	Line 274E5.2S	69.0 to TWEEDY 69.0 Circuit 1
line_759	Line	Line 28.E5.2S	69.0 to 274E5.2S 69.0 Circuit 1
line_760	Line	Line 28.E4.0S	69.0 to 28.E5.2S 69.0 Circuit 1
line_761	Line	Line 28.E3.0S	69.0 to 28.E4.0S 69.0 Circuit 1
line_762	Line	Line 28.E2.0S	69.0 to 28.E3.0S 69.0 Circuit 1
line_763	Line	Line 29.E2.0S	69.0 to 28.E2.0S 69.0 Circuit 1
line_764	Line	Line 29.E1.0S	69.0 to 295E1.0S 69.0 Circuit 1
line_765	Line	Line 29.E1.0S	69.0 to 28.E1.5S 69.0 Circuit 1
line_766	Line	Line EGAN	69.0 to 41.E9.0S 69.0 Circuit 1
line_767	Line	Line 5.5E8.5N	69.0 to 5.5E9.0N 69.0 Circuit 1
line_768	Line	Line 358E1.0S	69.0 to 35.E3.0S 69.0 Circuit 1
line_769	Line	Line 358E1.0S	69.0 to 36.E1.0N 69.0 Circuit 1
line_770	Line	Line FERRIS	69.0 to JONES 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_771	Line	Line FERRIS 69.0 to 245E6.0S 69.0 Circuit 1
line_772	Line	Line RIOVERDE 69.0 to 34E17N 69.0 Circuit 1
line_773	Line	Line RIOVERDE 69.0 to PINKERTO 69.0 Circuit 1
line_774	Line	Line WEBBER 69.0 to HUNT 69.0 Circuit 1
line_775	Line	Line WEBBER 69.0 to 436E15.S 69.0 Circuit 1
line_776	Line	Line MICROMIL 69.0 to 42.E9.0S 69.0 Circuit 1
line_777	Line	Line MCREYNO1 69.0 to MCREYNO2 69.0 Circuit 1
line_778	Line	Line CLARK 69.0 to SANTAN 69.0 Circuit 1
line_779	Line	Line MCREYNO2 69.0 to MCREYNO3 69.0 Circuit 1
line_780	Line	Line BROWNING 69.0 to CASEY 69.0 Circuit 1
line_781	Line	Line BROWNING 69.0 to LUNA 69.0 Circuit 1
line_782	Line	Line BROWNING 69.0 to LUNA 69.0 Circuit 2
line_783	Line	Line DINOSAUR 69.0 to HUNT 69.0 Circuit 1
line_784	Line	Line DINOSAUR 69.0 to QUAIL 4 69.0 Circuit 1
line_785	Line	Line DINOSAUR 69.0 to QUEENCRE 69.0 Circuit 1
line_786	Line	Line CRISMON 69.0 to EGAN 69.0 Circuit 1
line_787	Line	Line DINOSAUR 69.0 to MICROMIL 69.0 Circuit 1
line_788	Line	Line ABEL 69.0 to 436E15.S 69.0 Circuit 1
line_789	Line	Line QUAIL G1 69.0 to QUAIL 1 69.0 Circuit 1
line_790	Line	Line QUAIL G2 69.0 to QUAIL 2 69.0 Circuit 1
line_791	Line	Line OLIVE G 69.0 to OLIVE 69.0 Circuit 1
line_792	Line	Line GREENLEE 345.0 to WINCHSTR 345.0 Circuit 1
line_793	Line	Line GREENLEE 345.0 to COPPERVR 345.0 Circuit 1
line_794	Line	Line MCKINLEY 345.0 to SPRINGR 345.0 Circuit 1
line_795	Line	Line MCKINLEY 345.0 to SPRINGR 345.0 Circuit 2
line_796	Line	Line SPRINGR 345.0 to LUNA 345.0 Circuit 1
line_797	Line	Line SPRINGR 345.0 to CORONADO 345.0 Circuit 1
line_798	Line	Line SPRINGR 345.0 to GREENLEE 345.0 Circuit 1
line_799	Line	Line SPRINGR 345.0 to VAIL2 345.0 Circuit 1
line_800	Line	Line VAIL 345.0 to SOUTH 345.0 Circuit 1
line_801	Line	Line WESTWING 345.0 to PINALWES 345.0 Circuit 1
line_802	Line	Line WINCHSTR 345.0 to VAIL 345.0 Circuit 1
line_803	Line	Line PINALWES 345.0 to SOUTH 345.0 Circuit 1
line_804	Line	Line DMP 138.0 to NE.LOOP 138.0 Circuit 1
line_805	Line	Line DMP 138.0 to SN.CRUZ 138.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_806	Line	Line DMP 138.0 to NL. EXP 138.0 Circuit 1
line_807	Line	Line DREXEL 138.0 to IRVNGTN 138.0 Circuit 1
line_808	Line	Line DREXEL 138.0 to MIDVALE 138.0 Circuit 1
line_809	Line	Line E. LOOP 138.0 to NE.LOOP 138.0 Circuit 1
line_810	Line	Line E. LOOP 138.0 to ROBERTS 138.0 Circuit 1
line_811	Line	Line E. LOOP 138.0 to PANTANO 138.0 Circuit 1
line_812	Line	Line IRVNGTN 138.0 to TUCSON 138.0 Circuit 1
line_813	Line	Line IRVNGTN 138.0 to VAIL 138.0 Circuit 2
line_814	Line	Line N. LOOP 138.0 to NL. EXP 138.0 Circuit 1
line_815	Line	Line NE.LOOP 138.0 to RILLITO 138.0 Circuit 1
line_816	Line	Line NE.LOOP 138.0 to NELP_SVC 138.0 Circuit 1
line_817	Line	Line RANVISTO 138.0 to LACANADA 138.0 Circuit 1
line_818	Line	Line RILLITO 138.0 to LACANADA 138.0 Circuit 1
line_819	Line	Line S.TRAIL 138.0 to ROBERTS 138.0 Circuit 1
line_820	Line	Line SN.CRUZ 138.0 to IRVNGTN 138.0 Circuit 1
line_821	Line	Line SNYDER 138.0 to E. LOOP 138.0 Circuit 1
line_822	Line	Line SNYDER 138.0 to NE.LOOP 138.0 Circuit 1
line_823	Line	Line SOUTH 138.0 to MIDVALE 138.0 Circuit 1
line_824	Line	Line SOUTH 138.0 to ASARCO 138.0 Circuit 1
line_825	Line	Line SOUTH 138.0 to CYPRUS 138.0 Circuit 1
line_826	Line	Line SOUTH 138.0 to GREENVLY 138.0 Circuit 1
line_827	Line	Line TORTOLIT 138.0 to N. LOOP 138.0 Circuit 4
line_828	Line	Line TORTOLIT 138.0 to RANVISTO 138.0 Circuit 1
line_829	Line	Line TORTOLIT 138.0 to NL. EXP 138.0 Circuit 1
line_830	Line	Line TORTOLIT 138.0 to NL. EXP 138.0 Circuit 2
line_831	Line	Line TORTOLIT 138.0 to NL. EXP 138.0 Circuit 3
line_832	Line	Line TUCSON 138.0 to DELCERRO 138.0 Circuit 1
line_833	Line	Line TWNTYSEC 138.0 to E. LOOP 138.0 Circuit 1
line_834	Line	Line TWNTYSEC 138.0 to IRVNGTN 138.0 Circuit 1
line_835	Line	Line VAIL 138.0 to FT.HUACH 138.0 Circuit 1
line_836	Line	Line VAIL 138.0 to CIENEGA 138.0 Circuit 1
line_837	Line	Line RBWILMOT 138.0 to IRVNGTN 138.0 Circuit 1
line_838	Line	Line RBWILMOT 138.0 to VAIL 138.0 Circuit 1
line_839	Line	Line LOSREALS 138.0 to VAIL 138.0 Circuit 1
line_840	Line	Line PANTANO 138.0 to LOSREALS 138.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_841	Line	Line DELCERRO 138.0 to WESTINA 138.0 Circuit 1
line_842	Line	Line GREENVLY 138.0 to CANOARCH 138.0 Circuit 1
line_843	Line	Line CIENEGA 138.0 to S.TRAIL 138.0 Circuit 1
line_844	Line	Line IRV_RING 138.0 to SOUTH 138.0 Circuit 1
line_845	Line	Line KANTOR 115.0 to CANEZ 115.0 Circuit 1
line_846	Line	Line CANEZ 115.0 to SONOITA 115.0 Circuit 1
line_847	Line	Line SONOITA 115.0 to VALNCIA 115.0 Circuit 1
line_848	Line	Line COPPERVR 230.0 to FRISCO 230.0 Circuit 1
line_849	Line	Line PD-MORNC 230.0 to FRISCO 230.0 Circuit 1
line_850	Line	Line NL. EXP 138.0 to RILLITO 138.0 Circuit 1
line_851	Line	Line NL. EXP 138.0 to WESTINA 138.0 Circuit 1
line_852	Line	Line APACH-SW 69.0 to COCHISE 69.0 Circuit 1
line_853	Line	Line APACH-SW 69.0 to KANSAS S 69.0 Circuit 1
line_854	Line	Line APACH-SW 69.0 to WILCOXTP 69.0 Circuit 1
line_855	Line	Line APACHE 115.0 to HAYDENAZ 115.0 Circuit 1
line_856	Line	Line APACHE 230.0 to BUTERFLD 230.0 Circuit 1
line_857	Line	Line APACHE 230.0 to RED TAIL 230.0 Circuit 1
line_858	Line	Line APACHE 230.0 to WINCHSTR 230.0 Circuit 1
line_859	Line	Line AVRA 115.0 to SNDARIO 115.0 Circuit 1
line_860	Line	Line BICKNELL 345.0 to VAIL 345.0 Circuit 1
line_861	Line	Line BICKNELL 115.0 to THREEPNT 115.0 Circuit 1
line_862	Line	Line BUTERFLD 230.0 to PANTANO 230.0 Circuit 1
line_863	Line	Line BUTERFLD 230.0 to SAN RAF 230.0 Circuit 1
line_864	Line	Line DOSCONDO 230.0 to HACKBERY 230.0 Circuit 1
line_865	Line	Line MARANA 115.0 to AVRA 115.0 Circuit 1
line_866	Line	Line MARANATP 115.0 to MARANA 115.0 Circuit 1
line_867	Line	Line MARANATP 115.0 to RATTLSNK 115.0 Circuit 1
line_868	Line	Line MORENCI 230.0 to PD-MORNC 230.0 Circuit 1
line_869	Line	Line MORENCI 230.0 to GREEN-SW 230.0 Circuit 1
line_870	Line	Line PANTANO 115.0 to KARTCHNR 115.0 Circuit 1
line_871	Line	Line PANTANO 230.0 to NEWTUCSN 230.0 Circuit 1
line_872	Line	Line RED TAIL 230.0 to DOSCONDO 230.0 Circuit 1
line_873	Line	Line THREEPNT 115.0 to VALEN-SW 115.0 Circuit 1
line_874	Line	Line THREEPNT 115.0 to SNDARIO 115.0 Circuit 1
line_875	Line	Line DOSCONDO 69.0 to ARTESIA 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_876	Line	Line DOSCONDO	69.0 to CACTUSAE 69.0 Circuit 1
line_877	Line	Line DOSCONDO	69.0 to SNJOSETP 69.0 Circuit 1
line_878	Line	Line KARTCHNR	69.0 to KEAT JCT 69.0 Circuit 1
line_879	Line	Line KARTCHNR	69.0 to S.VISTA 69.0 Circuit 1
line_880	Line	Line KARTCHNR	69.0 to S.CRUZJT 69.0 Circuit 1
line_881	Line	Line HACKBERY	230.0 to MORENCI 230.0 Circuit 1
line_882	Line	Line HACKBERY	69.0 to THATCHER 69.0 Circuit 1
line_883	Line	Line RED TAIL	69.0 to BOWIE 69.0 Circuit 1
line_884	Line	Line SAN RAF	69.0 to PUEBLO69 69.0 Circuit 1
line_885	Line	Line SAN RAF	69.0 to HAWES SW 69.0 Circuit 1
line_886	Line	Line SAN RAF	69.0 to GARDENSW 69.0 Circuit 1
line_887	Line	Line BICKNELL	69.0 to GREENVLY 69.0 Circuit 1
line_888	Line	Line SAHUARIT	230.0 to BICKNELL 230.0 Circuit 1
line_889	Line	Line ARTESIA	69.0 to SWIFTTRL 69.0 Circuit 1
line_890	Line	Line ARTESIA	69.0 to HOOKERTP 69.0 Circuit 1
line_891	Line	Line CORK TAP	69.0 to THATCHER 69.0 Circuit 1
line_892	Line	Line CORK TAP	69.0 to PIMA69 69.0 Circuit 1
line_893	Line	Line FREEMAN	69.0 to N.THATCH 69.0 Circuit 1
line_894	Line	Line SWIFTTRL	69.0 to SAFFTAP1 69.0 Circuit 1
line_895	Line	Line N.THATCH	69.0 to THATCHER 69.0 Circuit 1
line_896	Line	Line SAFFTAP1	69.0 to CORK TAP 69.0 Circuit 1
line_897	Line	Line SAFFTAP2	69.0 to CACTUSAE 69.0 Circuit 1
line_898	Line	Line SAFFTAP2	69.0 to SAFFORD 69.0 Circuit 1
line_899	Line	Line SNJOSETP	69.0 to ROMNEY 69.0 Circuit 1
line_900	Line	Line SNJOSETP	69.0 to SAN JOSE 69.0 Circuit 1
line_901	Line	Line PIMA69 6	69.0 to CORK 69.0 Circuit 1
line_902	Line	Line BENSON	69.0 to DAVIDJCT 69.0 Circuit 1
line_903	Line	Line BOWIE 6	69.0 to SANSIMON 69.0 Circuit 1
line_904	Line	Line BVISTATP	69.0 to B.VISTA 69.0 Circuit 1
line_905	Line	Line BVISTATP	69.0 to CHARLSTN 69.0 Circuit 1
line_906	Line	Line CHARLSTN	69.0 to PUEBLO69 69.0 Circuit 1
line_907	Line	Line COCHISE	69.0 to JOHN JCT 69.0 Circuit 1
line_908	Line	Line DAVIDJCT	69.0 to ST.DAVID 69.0 Circuit 1
line_909	Line	Line DAVIDJCT	69.0 to TOMB JCT 69.0 Circuit 1
line_910	Line	Line HOOKERTP	69.0 to MORT TAP 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Nam	
line_911	Line	Line HUACHJCT	69.0 to HUACHUCA 69.0 Circuit 1
line_912	Line	Line JOHN JCT	69.0 to MESCALJT 69.0 Circuit 1
line_913	Line	Line KANSAS S	69.0 to CHIRICAH 69.0 Circuit 1
line_914	Line	Line KEAT JCT	69.0 to HAWES 69.0 Circuit 1
line_915	Line	Line KEAT JCT	69.0 to KEATING 69.0 Circuit 1
line_916	Line	Line MORT TAP	69.0 to HOOKER 69.0 Circuit 1
line_917	Line	Line MORT TAP	69.0 to BONITA 69.0 Circuit 1
line_918	Line	Line HAWES SW	69.0 to HAWES 69.0 Circuit 1
line_919	Line	Line HAWES SW	69.0 to GARDENSW 69.0 Circuit 1
line_920	Line	Line S.VISTA	69.0 to BVISTATP 69.0 Circuit 1
line_921	Line	Line ST.DAVID	69.0 to COTTONWD 69.0 Circuit 1
line_922	Line	Line TOMB JCT	69.0 to HUACHJCT 69.0 Circuit 1
line_923	Line	Line TOMB JCT	69.0 to TOMBSTON 69.0 Circuit 1
line_924	Line	Line TOMB JCT	69.0 to WEBB 69.0 Circuit 1
line_925	Line	Line TOMBSTON	N 69.0 to CHARLSTN 69.0 Circuit 1
line_926	Line	Line WEBB	69.0 to MCNEAL 69.0 Circuit 1
line_927	Line	Line WILCOXTP	69.0 to STEWART 69.0 Circuit 1
line_928	Line	Line WILCOXTP	69.0 to WILLCOX 69.0 Circuit 1
line_929	Line	Line CHIRICAH	69.0 to WEBB 69.0 Circuit 1
line_930	Line	Line HEREFORD	69.0 to PALOMNAS 69.0 Circuit 1
line_931	Line	Line BONITA	69.0 to MORTENSN 69.0 Circuit 1
line_932	Line	Line MESCALJT	69.0 to BENSON 69.0 Circuit 1
line_933	Line	Line MESCALJT	69.0 to MESCAL 69.0 Circuit 1
line_934	Line	Line S.CRUZJT	69.0 to HUACHJCT 69.0 Circuit 1
line_935	Line	Line S.BRKRCH	115.0 to SNMANUEL 115.0 Circuit 1
line_936	Line	Line NEWTUCSN	N 230.0 to SAHUARIT 230.0 Circuit 1
line_937	Line	Line KINGMANT	69.0 to HUALAPAI 69.0 Circuit 1
line_938	Line	Line HENDRSON	230.0 to MEAD N 230.0 Circuit 1
line_939	Line	Line BC TAP 230	230.0 to MEAD N 230.0 Circuit 1
line_940	Line	Line H ALLEN	500.0 to MEAD 500.0 Circuit 1
line_941	Line	Line MEAD N	230.0 to ARDEN 230.0 Circuit 1
line_942	Line	Line MEAD N	230.0 to EASTSIDE 230.0 Circuit 1
line_943	Line	Line MEAD N	230.0 to NEWPORT 230.0 Circuit 1
line_944	Line	Line MEAD N	230.0 to EQUEST 230.0 Circuit 2
line_945	Line	Line MEAD N	230.0 to HVRA3A4 230.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_946	Line	Line MEAD S	230.0 to PAHRUMP 230.0 Circuit 1
line_947	Line	Line MEAD S	230.0 to EQUEST 230.0 Circuit 1
line_948	Line	Line MEAD S	230.0 to GREENWAY 230.0 Circuit 1
line_949	Line	Line MEAD S	230.0 to MEAD N 230.0 Circuit 1
line_950	Line	Line MEAD S	230.0 to MEAD N 230.0 Circuit 2
line_951	Line	Line MEAD S	230.0 to ELDORDO 230.0 Circuit 1
line_952	Line	Line MEAD S	230.0 to ELDORDO 230.0 Circuit 2
line_953	Line	Line MEAD S	230.0 to MCCULLGH 230.0 Circuit 1
line_954	Line	Line MEAD S	230.0 to MCCULLGH 230.0 Circuit 2
line_955	Line	Line PARKERAZ	Z 69.0 to CLO-TAP 69.0 Circuit 1
line_956	Line	Line PLANETTP	69.0 to BUK-TAP 69.0 Circuit 1
line_957	Line	Line BLYTHE	161.0 to BLYTHEAZ 161.0 Circuit 1
line_958	Line	Line BLYTHE	161.0 to BUCKBLVD 161.0 Circuit 1
line_959	Line	Line BLYTHE	161.0 to GLT TAP 161.0 Circuit 1
line_960	Line	Line BLYTHE	161.0 to HEADGATE 161.0 Circuit 1
line_961	Line	Line BLYTHE	161.0 to BLYTHESC 161.0 Circuit 1
line_962	Line	Line DAVIS	230.0 to RIVIERA 230.0 Circuit 1
line_963	Line	Line DAVIS	230.0 to MEAD N 230.0 Circuit 1
line_964	Line	Line DAVIS	230.0 to TOPOCK 230.0 Circuit 1
line_965	Line	Line DAVIS	230.0 to TOPOCK 230.0 Circuit 2
line_966	Line	Line DAVIS	230.0 to MCCULLGH 230.0 Circuit 1
line_967	Line	Line HOVRA5A6	$6 \quad 230.0$ to MEAD S 230.0 Circuit 1
line_968	Line	Line HOVRA7-9	230.0 to MEAD S 230.0 Circuit 1
line_969	Line	Line MEAD	500.0 to PERKINS 500.0 Circuit 1
line_970	Line	Line MEAD	500.0 to MARKETPL 500.0 Circuit 1
line_971	Line	Line PARKERAZ	Z 161.0 to BLYTHE 161.0 Circuit 1
line_972	Line	Line PARKERAZ	161.0 to BOUSE 161.0 Circuit 1
line_973	Line	Line PARKERAZ	161.0 to HEADGATE 161.0 Circuit 1
line_974	Line	Line PARKER	230.0 to EAGLEYE 230.0 Circuit 1
line_975	Line	Line PARKER	230.0 to BLK MESA 230.0 Circuit 1
line_976	Line	Line PARKER	230.0 to HAVASU 230.0 Circuit 1
line_977	Line	Line PARKER	230.0 to HARCUVAR 230.0 Circuit 1
line_978	Line	Line PARKER	230.0 to GENE 230.0 Circuit 1
line_979	Line	Line COOLIDGE	115.0 to VLYFARMS 115.0 Circuit 1
line_980	Line	Line COOLIDGE	115.0 to COL-SCIP 115.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_981	Line	Line COOLIDGE 115.0 to ED-2 115.0 Circuit 1
line_982	Line	Line COOLIDGE 115.0 to SIGNAL 115.0 Circuit 1
line_983	Line	Line COOLIDGE 230.0 to SUNDANCE 230.0 Circuit 1
line_984	Line	Line COOLIDGE 230.0 to SUNDANCE 230.0 Circuit 2
line_985	Line	Line BOUSE 161.0 to KOFA 161.0 Circuit 1
line_986	Line	Line DEL BAC 115.0 to NGL-WALC 115.0 Circuit 1
line_987	Line	Line GILA YU 161.0 to KNOB 161.0 Circuit 1
line_988	Line	Line GILA YU 161.0 to DOME TAP 161.0 Circuit 1
line_989	Line	Line KNOB 161.0 to DESALTER 161.0 Circuit 1
line_990	Line	Line LIBERTY 230.0 to WESTWNGW 230.0 Circuit 1
line_991	Line	Line LIBERTY 230.0 to RUDD 230.0 Circuit 1
line_992	Line	Line LIBERTY 230.0 to PHX WAPA 230.0 Circuit 1
line_993	Line	Line LIBERTY 230.0 to LONEBUTT 230.0 Circuit 1
line_994	Line	Line LIBERTY 345.0 to PEACOCK 345.0 Circuit 1
line_995	Line	Line MCCONICO 230.0 to DAVIS 230.0 Circuit 1
line_996	Line	Line MCCONICO 230.0 to GRIFFITH 230.0 Circuit 1
line_997	Line	Line ORACLE 115.0 to S.BRKRCH 115.0 Circuit 1
line_998	Line	Line LIBTYPS 230.0 to LIBERTY 230.0 Circuit 2
line_999	Line	Line ADAMSTAP 115.0 to APACHE 115.0 Circuit 1
line_1000	Line	Line ADAMSTAP 115.0 to NGL-WALC 115.0 Circuit 1
line_1001	Line	Line PHX WAPA 230.0 to LONEBUTT 230.0 Circuit 1
line_1002	Line	Line PPKWAPA 230.0 to WESTWNGW 230.0 Circuit 1
line_1003	Line	Line PPKWAPA 230.0 to PINPKSRP 230.0 Circuit 2
line_1004	Line	Line PPKWAPA 230.0 to PINPKSRP 230.0 Circuit 4
line_1005	Line	Line WLTNMOHK 161.0 to GILA YU 161.0 Circuit 1
line_1006	Line	Line TUCSON 115.0 to DEL BAC 115.0 Circuit 1
line_1007	Line	Line TUCSON 115.0 to ORACLE 115.0 Circuit 1
line_1008	Line	Line ED-2 115.0 to ED-4 115.0 Circuit 1
line_1009	Line	Line ED-2 115.0 to BRADY 115.0 Circuit 1
line_1010	Line	Line SIGNAL 115.0 to ED-2 115.0 Circuit 1
line_1011	Line	Line TESTTRAK 230.0 to CASAGRND 230.0 Circuit 1
line_1012	Line	Line ED-5B 115.0 to EMPIRE 115.0 Circuit 1
line_1013	Line	Line ED-5B 115.0 to ED-2 12.5 Circuit 1
line_1014	Line	Line ED-5B 115.0 to ED-5 115.0 Circuit 1
line_1015	Line	Line DOME TAP 161.0 to WLTNMOHK 161.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1016	Line	Line ED-4 115.0 to ELOY 115.0 Circuit 1
line_1017	Line	Line HILLTOP 230.0 to MCCONICO 230.0 Circuit 1
line_1018	Line	Line N.HAVASU 230.0 to PARKER 230.0 Circuit 1
line_1019	Line	Line HOVRN7N8 230.0 to MEAD S 230.0 Circuit 1
line_1020	Line	Line HOVRN5N6 230.0 to MEAD S 230.0 Circuit 1
line_1021	Line	Line HOVRN3N4 230.0 to MEAD S 230.0 Circuit 1
line_1022	Line	Line HOVRN1N2 230.0 to MEAD S 230.0 Circuit 1
line_1023	Line	Line HOVRA1A2 230.0 to MEAD S 230.0 Circuit 1
line_1024	Line	Line ORACLE 69.0 to S.BROOKE 69.0 Circuit 1
line_1025	Line	Line ED-5 115.0 to ED-4 115.0 Circuit 1
line_1026	Line	Line GLT TAP 161.0 to KNOB 161.0 Circuit 1
line_1027	Line	Line PRSCOTWA 230.0 to PRESCOTT 230.0 Circuit 1
line_1028	Line	Line PRSCOTWA 230.0 to RNDVLYTP 230.0 Circuit 1
line_1029	Line	Line GAVLINWA 230.0 to GAVILNPK 230.0 Circuit 1
line_1030	Line	Line GAVLINWA 230.0 to PPKWAPA 230.0 Circuit 1
line_1031	Line	Line GAVLINWA 230.0 to PRSCOTWA 230.0 Circuit 1
line_1032	Line	Line RACEWYWA 230.0 to WESTWNGE 230.0 Circuit 1
line_1033	Line	Line BUK-TAP 69.0 to CLO-TAP 69.0 Circuit 1
line_1034	Line	Line BLACKMTN 115.0 to DEL BAC 115.0 Circuit 1
line_1035	Line	Line BRAWLEY 115.0 to SANXAVER 115.0 Circuit 1
line_1036	Line	Line HARCUVAR 230.0 to HASSYTAP 230.0 Circuit 1
line_1037	Line	Line N.WADDEL 230.0 to RACEWYWA 230.0 Circuit 1
line_1038	Line	Line PICACHOW 115.0 to BRADY 115.0 Circuit 1
line_1039	Line	Line PICACHOW 115.0 to RED ROCK 115.0 Circuit 1
line_1040	Line	Line RATTLSNK 115.0 to TUCSON 115.0 Circuit 1
line_1041	Line	Line RATTLSNK 115.0 to TWINPEAK 115.0 Circuit 1
line_1042	Line	Line RED ROCK 115.0 to SAG.EAST 115.0 Circuit 1
line_1043	Line	Line SANDARIO 115.0 to BRAWLEY 115.0 Circuit 1
line_1044	Line	Line SANXAVER 115.0 to SNYDHILL 115.0 Circuit 1
line_1045	Line	Line SNYDHILL 115.0 to BLACKMTN 115.0 Circuit 1
line_1046	Line	Line SPOOKHIL 230.0 to COOLIDGE 230.0 Circuit 1
line_1047	Line	Line TWINPEAK 115.0 to SANDARIO 115.0 Circuit 1
line_1048	Line	Line TESTTRAK 69.0 to MARICOPA 69.0 Circuit 1
line_1049	Line	Line NGL-WALC 115.0 to KANTOR 115.0 Circuit 1
line_1050	Line	Line CASAGRND 115.0 to EMPIRE 115.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1051	Line	Line LONEBUTT 230.0 to TESTTRAK 230.0 Circuit 1
line_1052	Line	Line LONEBUTT 230.0 to SUNDANCE 230.0 Circuit 1
line_1053	Line	Line SONORA 69.0 to GILA 69.0 Circuit 1
line_1054	Line	Line GRIFFITH 230.0 to PEACOCK 230.0 Circuit 1
line_1055	Line	Line PEACOCK 230.0 to HILLTOP 230.0 Circuit 1
line_1056	Line	Line PEACOCK 345.0 to MEAD 345.0 Circuit 1
line_1057	Line	Line TOPOCK 230.0 to BLK MESA 230.0 Circuit 1
line_1058	Line	Line TOPOCK 230.0 to N.HAVASU 230.0 Circuit 1
line_1059	Line	Line TOPOCK 230.0 to SOPOINT 230.0 Circuit 1
line_1060	Line	Line TOPOCK 230.0 to SOPOINT 230.0 Circuit 2
line_1061	Line	Line KOFA 161.0 to DOME TAP 161.0 Circuit 1
line_1062	Line	Line DAVIS 69.0 to BUL-WALC 69.0 Circuit 1
line_1063	Line	Line HASSYTAP 230.0 to LIBERTY 230.0 Circuit 1
line_1064	Line	Line RNDVLYTP 230.0 to RNDVLYAZ 230.0 Circuit 1
line_1065	Line	Line RNDVLYTP 230.0 to PEACOCK 230.0 Circuit 1
line_1066	Line	Line ROGSWAPA 230.0 to PPKWAPA 230.0 Circuit 1
line_1067	Line	Line ROGSWAPA 230.0 to PPKWAPA 230.0 Circuit 2
line_1068	Line	Line ROGSWAPA 230.0 to SPOOKHIL 230.0 Circuit 1
line_1069	Line	Line HOGBAKTP 115.0 to HOGBAK 115.0 Circuit 1
line_1070	Line	Line WST-WALC 69.0 to WARMSPRG 69.0 Circuit 1
line_1071	Line	Line WST-WALC 69.0 to DUV-WALC 69.0 Circuit 1
line_1072	Line	Line DUV-WALC 69.0 to DUVAL 69.0 Circuit 1
line_1073	Line	Line DUV-WALC 69.0 to KINGMANT 69.0 Circuit 1
line_1074	Line	Line BUL-WALC 69.0 to BULLHEAD 69.0 Circuit 1
line_1075	Line	Line BUL-WALC 69.0 to WST-WALC 69.0 Circuit 1
line_1076	Line	Line CAMINO 230.0 to MEAD S 230.0 Circuit E
line_1077	Line	Line CAMINO 230.0 to MEAD S 230.0 Circuit W
line_1078	Line	Line PINTO PS 345.0 to FOURCORN 345.0 Circuit 1
line_1079	Line	Line SIGURDPS 230.0 to GLENCANY 230.0 Circuit 1
line_1080	Line	Line FLAGSTAF 345.0 to GLENCANY 345.0 Circuit 1
line_1081	Line	Line FLAGSTAF 345.0 to GLENCANY 345.0 Circuit 2
line_1082	Line	Line FLAGSTAF 345.0 to PPK WAPA 345.0 Circuit 1
line_1083	Line	Line FLAGSTAF 345.0 to PPK WAPA 345.0 Circuit 2
line_1084	Line	Line GALLEGOS 115.0 to BERGIN 115.0 Circuit 1
line_1085	Line	Line GLEN PS 230.0 to GLENCANY 230.0 Circuit 2

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1086	Line	Line GLEN PS 230.0 to NAVAJO 230.0 Circuit 1
line_1087	Line	Line KAYENTA 230.0 to SHIPROCK 230.0 Circuit 1
line_1088	Line	Line KAYENTA 230.0 to LNGHOUSE 230.0 Circuit 1
line_1089	Line	Line SHIPROCK 115.0 to FRUITAP 115.0 Circuit 1
line_1090	Line	Line SHIPROCK 115.0 to MESA FM 115.0 Circuit 1
line_1091	Line	Line SHIPROCK 230.0 to FOURCORN 230.0 Circuit 1
line_1092	Line	Line SHIPROCK 345.0 to SAN_JUAN 345.0 Circuit 1
line_1093	Line	Line SHIPROCK 345.0 to FOURCORN 345.0 Circuit 1
line_1094	Line	Line NAVAJO 230.0 to LNGHOUSE 230.0 Circuit 1
line_1095	Line	Line ANIMAS 115.0 to MESA FM 115.0 Circuit 1
line_1096	Line	Line ANIMAS 115.0 to SULLIVAN 115.0 Circuit 1
line_1097	Line	Line BERGIN 115.0 to FOOTHILS 115.0 Circuit 1
line_1098	Line	Line BERGIN 115.0 to SAN JUAN 115.0 Circuit 1
line_1099	Line	Line FOOTHILS 115.0 to HOODMESA 115.0 Circuit 1
line_1100	Line	Line FRUITAP 115.0 to FRUITLND 115.0 Circuit 1
line_1101	Line	Line FRUITAP 115.0 to HOODMESA 115.0 Circuit 1
line_1102	Line	Line GLADETAP 115.0 to HOODMESA 115.0 Circuit 1
line_1103	Line	Line GLADETAP 115.0 to LAPLATA 115.0 Circuit 1
line_1104	Line	Line GLADETAP 115.0 to ELPASOTP 115.0 Circuit 1
line_1105	Line	Line HOODMESA 115.0 to SULLIVAN 115.0 Circuit 1
line_1106	Line	Line NAVAJO 115.0 to SAN JUAN 115.0 Circuit 1
line_1107	Line	Line CHANDLER 69.0 to 28.E3.0S 69.0 Circuit 1
line_1108	Line	Line GILBERT 69.0 to 29.E2.0S 69.0 Circuit 1
line_1109	Line	Line GILBERT 69.0 to 295E1.0S 69.0 Circuit 1
line_1110	Line	Line PAPGOAPE 69.0 to 21E7.25N \quad 69.0 Circuit 1
line_1111	Line	Line Q043B1 500.0 to HDWSH 500.0 Circuit 1
line_1112	Line	Line Q043B2 500.0 to HDWSH 500.0 Circuit 1
line_1113	Line	Line SANPEDRO 69.0 to SPEDROTP 69.0 Circuit 1
line_1114	Line	Line PINAL 69.0 to HAYGULCH 69.0 Circuit 1
line_1115	Line	Line DON LUIS 69.0 to PALOMNAS 69.0 Circuit 1
line_1116	Line	Line DON LUIS 69.0 to MURAL 69.0 Circuit 1
line_1117	Line	Line SANPEDRO 69.0 to MCNEAL 69.0 Circuit 1
line_1118	Line	Line FAIRVIEW 69.0 to SPEDROTP 69.0 Circuit 1
line_1119	Line	Line MURAL 69.0 to SPEDROTP 69.0 Circuit 1
line_1120	Line	Line EASTGATS 69.0 to EGTAP W 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1121	Line	Line EASTGATS 69.0 to EGTAP E 69.0 Circuit 1
line_1122	Line	Line VISTA E 69.0 to VISTA W 69.0 Circuit 1
line_1123	Line	Line EASTGATN 69.0 to EASTGATS 69.0 Circuit 1
line_1124	Line	Line EASTGATN 69.0 to VISTA E 69.0 Circuit 1
line_1125	Line	Line SNTAROSA 69.0 to MARICOPA 69.0 Circuit 1
line_1126	Line	Line SNTAROSA 69.0 to ASARCOTP 69.0 Circuit 1
line_1127	Line	Line ASARCO 69.0 to VISTA W 69.0 Circuit 1
line_1128	Line	Line ASARCO 69.0 to SNTAROSA 69.0 Circuit 1
line_1129	Line	Line MILLIGAN 69.0 to ARICA 69.0 Circuit 1
line_1130	Line	Line TOLTEC 69.0 to MILLIGAN 69.0 Circuit 1
line_1131	Line	Line CASGRAPS 69.0 to EGTAP W 69.0 Circuit 1
line_1132	Line	Line ASARCOTP 69.0 to VISTA W 69.0 Circuit 1
line_1133	Line	Line ASARCOTP 69.0 to ASARCO 69.0 Circuit 1
line_1134	Line	Line EGTAP E 69.0 to TOLTEC 69.0 Circuit 1
line_1135	Line	Line EGTAP E 69.0 to EGTAP W 69.0 Circuit 1
line_1136	Line	Line GILA 69.0 to AR FH TP 69.0 Circuit 1
line_1137	Line	Line YUCCA W 69.0 to YUCTAP E 69.0 Circuit 1
line_1138	Line	Line YUCCA W 69.0 to YUCTAP W 69.0 Circuit 1
line_1139	Line	Line YUCTAP E 69.0 to DUPONT 69.0 Circuit 1
line_1140	Line	Line DUPONT 69.0 to 32STREET 69.0 Circuit 1
line_1141	Line	Line YUCTAP W 69.0 to YUCTAP E 69.0 Circuit 1
line_1142	Line	Line YUCTAP W 69.0 to LAGUNA 69.0 Circuit 1
line_1143	Line	Line 32STREET 69.0 to WALDRIP 69.0 Circuit 1
line_1144	Line	Line SANGUINE 69.0 to SW7 69.0 Circuit 1
line_1145	Line	Line SANGUINE 69.0 to MITTRY 69.0 Circuit 1
line_1146	Line	Line SANLUIS 69.0 to BAJA 69.0 Circuit 1
line_1147	Line	Line RVERSIDE 69.0 to YCA 69.0 Circuit 1
line_1148	Line	Line RVERSIDE 69.0 to COCOPAH 69.0 Circuit 1
line_1149	Line	Line RVERSIDE 69.0 to TENTHSTN 69.0 Circuit 1
line_1150	Line	$\begin{array}{llll}\text { Line MAB } & \text { S } & 69.0 \text { to ARABY S } & \text { 69.0 Circuit } 1\end{array}$
line_1151	Line	$\begin{array}{lllll}\text { Line MAB } & \mathrm{N} & 69.0 \text { to MAB } & \mathrm{S} & \text { 69.0 Circuit } 1\end{array}$
line_1152	Line	Line YUCCA E 69.0 to RVERSIDE 69.0 Circuit 1
line_1153	Line	Line YUCCA E 69.0 to YUCCA C 69.0 Circuit 1
line_1154	Line	Line LAGUNA 69.0 to SANLUIS 69.0 Circuit 1
line_1155	Line	Line COCOPAH 69.0 to 32STREET 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1156	Line	Line WALDRIP 69.0 to MAB N 69.0 Circuit 1
line_1157	Line	Line WALDRIP 69.0 to BAJA 69.0 Circuit 1
line_1158	Line	Line WALDRIP 69.0 to SONEILL 69.0 Circuit 1
line_1159	Line	Line QUECHAN 69.0 to PACIFIC 69.0 Circuit 1
line_1160	Line	Line IVALON 69.0 to 32STREET 69.0 Circuit 1
line_1161	Line	Line REDONDO 69.0 to SANGUINE 69.0 Circuit 1
line_1162	Line	Line SONEILL 69.0 to MAB N 69.0 Circuit 1
line_1163	Line	Line ARABY N 69.0 to ARABY S 69.0 Circuit 1
line_1164	Line	Line ARABY N 69.0 to AR FH TP 69.0 Circuit 1
line_1165	Line	Line PACIFIC 69.0 to N.GILA 69.0 Circuit 1
line_1166	Line	Line SW7 69.0 to IVALON 69.0 Circuit 1
line_1167	Line	Line N.GILA 69.0 to GILA 69.0 Circuit 1
line_1168	Line	Line N.GILA 69.0 to YPGTAP 69.0 Circuit 1
line_1169	Line	Line N.GILA 69.0 to MITTRY 69.0 Circuit 1
line_1170	Line	Line TENTHSTN 69.0 to QUECHAN 69.0 Circuit 1
line_1171	Line	Line TENTHSTN 69.0 to TENTHSTS 69.0 Circuit 1
line_1172	Line	Line TENTHSTS 69.0 to 32STREET 69.0 Circuit 1
line_1173	Line	Line TENTHSTS 69.0 to COCOPAH 69.0 Circuit 1
line_1174	Line	Line AR FH TP 69.0 to FOTHITAP 69.0 Circuit 1
line_1175	Line	Line YUCCA C 69.0 to YUCCA W 69.0 Circuit 1
line_1176	Line	Line YUCCA C 69.0 to COCOPAH 69.0 Circuit 1
line_1177	Line	Line YPGTAP 69.0 to SENTWASH 69.0 Circuit 1
line_1178	Line	Line FOTHITAP 69.0 to REDONDO 69.0 Circuit 1
line_1179	Line	Line FOTHITAP 69.0 to FOOTHILS 69.0 Circuit 1
line_1180	Line	Line HEADGATE 69.0 to BLACKSW2 69.0 Circuit 1
line_1181	Line	Line BOUSE 161.0 to BLACK PK 161.0 Circuit 1
line_1182	Line	Line BUK-TAP 69.0 to BUCKSKIN 69.0 Circuit 1
line_1183	Line	Line PLANETTP 69.0 to PLANET 69.0 Circuit 1
line_1184	Line	Line CLO-TAP 69.0 to COLORADO 69.0 Circuit 1
line_1185	Line	Line COPRWELL 69.0 to QUARZSIT 69.0 Circuit 1
line_1186	Line	Line COPRWELL 69.0 to COPRMINE 69.0 Circuit 1
line_1187	Line	Line MC VAYTP 69.0 to UTTING 69.0 Circuit 1
line_1188	Line	Line QUARZTAP 69.0 to COPRWELL 69.0 Circuit 1
line_1189	Line	Line QUARZTAP 69.0 to BLACKSW1 69.0 Circuit 1
line_1190	Line	Line QUARZTAP 69.0 to BLACK PK 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1191	Line	Line BLACKSW1	69.0 to BLACKSW2 69.0 Circuit 1
line_1192	Line	Line BLACKSW1	69.0 to HAVASUTP 69.0 Circuit 1
line_1193	Line	Line HAVASUTP	69.0 to HAVASU 69.0 Circuit 1
line_1194	Line	Line VCKSBGTP	69.0 to MC VAYTP 69.0 Circuit 1
line_1195	Line	Line VCKSBGTP	69.0 to VICKSBRG 69.0 Circuit 1
line_1196	Line	Line SALOME	69.0 to VCKSBGTP 69.0 Circuit 1
line_1197	Line	Line BLACK PK	69.0 to UTTING 69.0 Circuit 1
line_1198	Line	Line AGUILA	69.0 to FLYINGE 69.0 Circuit 1
line_1199	Line	Line OBERLIN	69.0 to PATTON 69.0 Circuit 1
line_1200	Line	Line WICKNBRG	69.0 to FLORES 69.0 Circuit 1
line_1201	Line	Line WICKNBTP	69.0 to WICKNBRG 69.0 Circuit 1
line_1202	Line	Line WICKNBTP	69.0 to MORISTWN 69.0 Circuit 1
line_1203	Line	Line PATTONTP	69.0 to OBERLIN 69.0 Circuit 1
line_1204	Line	Line PATTONTP	69.0 to MORISTWN 69.0 Circuit 1
line_1205	Line	Line EAGLEY E	69.0 to AGUILA 69.0 Circuit 1
line_1206	Line	Line EAGLEY E	69.0 to EAGLEY W 69.0 Circuit 1
line_1207	Line	Line FLYINGE	69.0 to WICKNBRG 69.0 Circuit 1
line_1208	Line	Line FLYINGE	69.0 to WICKNBTP 69.0 Circuit 1
line_1209	Line	Line EAGLEY W	69.0 to SALOME 69.0 Circuit 1
line_1210	Line	Line FLORES	69.0 to YARNELL 69.0 Circuit 1
line_1211	Line	Line YAVAPAIW	69.0 to YAVAPATP 69.0 Circuit 1
line_1212	Line	Line DELANOTP	69.0 to PRCITY 69.0 Circuit 1
line_1213	Line	Line DELANOTP	69.0 to DELANO E 69.0 Circuit 1
line_1214	Line	Line QUAILSPN	69.0 to COTNWOOD 69.0 Circuit 1
line_1215	Line	Line WILHOIT	69.0 to KIRK JCT 69.0 Circuit 1
line_1216	Line	Line PRCITY 6	69.0 to WHITSPAR 69.0 Circuit 1
line_1217	Line	Line PRCITY 6	69.0 to WHITSPAR 69.0 Circuit 2
line_1218	Line	Line WILOWLKE	69.0 to WILOWLKW 69.0 Circuit 1
line_1219	Line	Line WILOWLKE	69.0 to WELLFELD 69.0 Circuit 1
line_1220	Line	Line WILOWLKE	69.0 to SUNDOGTP 69.0 Circuit 1
line_1221	Line	Line WILOWLKE	69.0 to ANTELOPE 69.0 Circuit 1
line_1222	Line	Line WILOWLKE	69.0 to PRCITYTP 69.0 Circuit 1
line_1223	Line	Line WILOWLKW	69.0 to DELANOTP 69.0 Circuit 1
line_1224	Line	Line WILOWLKW	69.0 to GREYBRTP 69.0 Circuit 1
line_1225	Line	Line SEDONA	69.0 to CAPBUTTE 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1226	Line	Line SEDONA	69.0 to MUNDPKTP 69.0 Circuit 1
line_1227	Line	Line QUAILSPN	69.0 to QUAILSPS 69.0 Circuit 1
line_1228	Line	Line QUAILSPN	69.0 to CORNVLTP 69.0 Circuit 1
line_1229	Line	Line CEMENT	69.0 to VERDE 69.0 Circuit 1
line_1230	Line	Line POLAND	69.0 to DEWEY S 69.0 Circuit 1
line_1231	Line	Line POLAND	69.0 to MCCABETP 69.0 Circuit 1
line_1232	Line	Line IRVING	69.0 to STRAWBTP 69.0 Circuit 1
line_1233	Line	Line BALDMTNN	69.0 to BALDMTNS 69.0 Circuit 1
line_1234	Line	Line CHILDS	69.0 to SYCAMOR 69.0 Circuit 1
line_1235	Line	Line CHILDS	69.0 to IRVING 69.0 Circuit 1
line_1236	Line	Line CHILDS	69.0 to COPCANYN 69.0 Circuit 1
line_1237	Line	Line WELLFELD	69.0 to LONEVL S 69.0 Circuit 1
line_1238	Line	Line SUNDOG E	69.0 to BALDMTNN 69.0 Circuit 1
line_1239	Line	Line SUNDOG W	69.0 to SUNDOG E 69.0 Circuit 1
line_1240	Line	Line CTWDTIE	69.0 to COTNWOOD 69.0 Circuit 1
line_1241	Line	Line CTWDTIE	69.0 to TAPCOTIE 69.0 Circuit 1
line_1242	Line	Line SUNDOGTP	69.0 to SUNDOG W 69.0 Circuit 1
line_1243	Line	Line SUNDOGTP	69.0 to PRCITYTP 69.0 Circuit 1
line_1244	Line	Line DEWEY N	69.0 to DEWEY S 69.0 Circuit 1
line_1245	Line	Line CORNVLTP	69.0 to CORNVIL 69.0 Circuit 1
line_1246	Line	Line CORNVLTP	69.0 to MCGUIRVL 69.0 Circuit 1
line_1247	Line	Line OAKCRKTP	69.0 to CAPBUTTE 69.0 Circuit 1
line_1248	Line	Line OAKCRKTP	69.0 to OAKCREEK 69.0 Circuit 1
line_1249	Line	Line BALDMTNS	69.0 to DEWEY N 69.0 Circuit 1
line_1250	Line	Line STMRGRTP	69.0 to STRMRUGR 69.0 Circuit 1
line_1251	Line	Line MINGUSTP	69.0 to YAVAPATP 69.0 Circuit 1
line_1252	Line	Line MINGUSTP	69.0 to MINGUS 69.0 Circuit 1
line_1253	Line	Line MINGUSTP	69.0 to TAPCOTIE 69.0 Circuit 1
line_1254	Line	Line TAPCOTIE	69.0 to VERDE 69.0 Circuit 1
line_1255	Line	Line KIRK JCT	69.0 to YARNELL 69.0 Circuit 1
line_1256	Line	Line DUGAS	69.0 to ORMESAPS 69.0 Circuit 1
line_1257	Line	Line DUGAS	69.0 to COPCANYN 69.0 Circuit 1
line_1258	Line	Line LONEVL N	69.0 to YAVAPATP 69.0 Circuit 1
line_1259	Line	Line LONEVL N	69.0 to DEWEY N 69.0 Circuit 1
line_1260	Line	Line LONEVL N	69.0 to LONEVL S 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Nam	
line_1261	Line	Line CORDESTP	69.0 to POLAND 69.0 Circuit 1
line_1262	Line	Line CORDESTP	69.0 to DUGAS 69.0 Circuit 1
line_1263	Line	Line CORDESTP	69.0 to CORDES 69.0 Circuit 1
line_1264	Line	Line ANTELOPE	69.0 to STMRGRTP 69.0 Circuit 1
line_1265	Line	Line DRAKE	69.0 to WILMSTAP 69.0 Circuit 1
line_1266	Line	Line WHITSPAR	69.0 to WILHOIT 69.0 Circuit 1
line_1267	Line	Line CHINOEST	69.0 to CHINOWST 69.0 Circuit 1
line_1268	Line	Line CHINOEST	69.0 to CHINOWLS 69.0 Circuit 1
line_1269	Line	Line CHINOTAP	69.0 to CHINOEST 69.0 Circuit 1
line_1270	Line	Line CHINOTAP	69.0 to OHM 69.0 Circuit 1
line_1271	Line	Line HAYFLDTP	69.0 to QUAILSPS 69.0 Circuit 1
line_1272	Line	Line HAYFLDTP	69.0 to HAYFLDDR 69.0 Circuit 1
line_1273	Line	Line VERDE	69.0 to CTWDTIE 69.0 Circuit 1
line_1274	Line	Line VERDE	69.0 to OAKCRKTP 69.0 Circuit 1
line_1275	Line	Line ORMESAPS	69.0 to SYCAMOR 69.0 Circuit 1
line_1276	Line	Line CHINOWST	69.0 to CHNOVLYS 69.0 Circuit 1
line_1277	Line	Line COPCANYN	69.0 to HAYFLDTP 69.0 Circuit 1
line_1278	Line	Line CHNOVLYN	69.0 to CHNOVLYS 69.0 Circuit 1
line_1279	Line	Line PRCITYTP	69.0 to PRCITY 69.0 Circuit 1
line_1280	Line	Line PAULDN	69.0 to DRAKE 69.0 Circuit 1
line_1281	Line	Line PAULDN	69.0 to CHNOVLYN 69.0 Circuit 1
line_1282	Line	Line GREYBRTP	69.0 to CHINOWST 69.0 Circuit 1
line_1283	Line	Line GREYBRTP	69.0 to GREYBERS 69.0 Circuit 1
line_1284	Line	Line TUBACYTP	69.0 to GAP 69.0 Circuit 1
line_1285	Line	Line TUBACYTP	69.0 to TUBACITY 69.0 Circuit 1
line_1286	Line	Line POLLOCK	69.0 to PAULDN 69.0 Circuit 1
line_1287	Line	Line COCONINO	69.0 to WINONA 69.0 Circuit 1
line_1288	Line	Line COCONINO	69.0 to ELDEN S 69.0 Circuit 1
line_1289	Line	Line COCONINO	69.0 to SWITZER 69.0 Circuit 1
line_1290	Line	Line COCONINO	69.0 to WODYMTTP 69.0 Circuit 1
line_1291	Line	Line SANDVIG	69.0 to ELDEN N 69.0 Circuit 1
line_1292	Line	Line SANDVIG	69.0 to BMTAP 69.0 Circuit 1
line_1293	Line	Line WINSLOWB	69.0 to BLURDG 69.0 Circuit 1
line_1294	Line	Line WINSLOW	69.0 to LEUPPJCT 69.0 Circuit 1
line_1295	Line	Line WINSLOW	69.0 to WINSLOWB 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1296	Line	Line WINSLOW 69.0 to CHLCONST 69.0 Circuit 1
line_1297	Line	Line BLKMESA 69.0 to BMTAP 69.0 Circuit 1
line_1298	Line	Line PADRE 69.0 to TWNARRWS 69.0 Circuit 1
line_1299	Line	Line LEROUXTP 69.0 to LEROUX 69.0 Circuit 1
line_1300	Line	Line LEROUXTP 69.0 to WOODRUFF 69.0 Circuit 1
line_1301	Line	Line LEROUX 69.0 to INDWELLS 69.0 Circuit 1
line_1302	Line	Line LECHE 69.0 to GAP 69.0 Circuit 1
line_1303	Line	Line OHM 69.0 to YAVAPAIW 69.0 Circuit 1
line_1304	Line	Line OHM 69.0 to PAULDN 69.0 Circuit 1
line_1305	Line	Line TUSAYAN 69.0 to VALLE 69.0 Circuit 1
line_1306	Line	Line WLMSPNGT 69.0 to WLMSEPNG 69.0 Circuit 1
line_1307	Line	Line WLMSPNGT 69.0 to NAVORDAN 69.0 Circuit 1
line_1308	Line	Line ELDEN N 69.0 to ELDEN S 69.0 Circuit 1
line_1309	Line	Line REDLAKE 69.0 to RAMONOSO 69.0 Circuit 1
line_1310	Line	Line REDLAKE 69.0 to WILIAMS 69.0 Circuit 1
line_1311	Line	Line SUNSHINE 69.0 to LEUPPJCT 69.0 Circuit 1
line_1312	Line	Line KACHVILL 69.0 to COCONINO 69.0 Circuit 1
line_1313	Line	Line CAMERON 69.0 to TUBACYTP 69.0 Circuit 1
line_1314	Line	Line POWELL1 69.0 to LECHE 69.0 Circuit 1
line_1315	Line	Line ASHFORK 69.0 to POLLOCK 69.0 Circuit 1
line_1316	Line	Line ASHFORK 69.0 to PINSPRNG 69.0 Circuit 1
line_1317	Line	Line GRANDCAN 69.0 to TUSAYAN 69.0 Circuit 1
line_1318	Line	Line PINSPRNG 69.0 to WILIAMS 69.0 Circuit 1
line_1319	Line	Line TONTO 69.0 to MAZATZAL 69.0 Circuit 1
line_1320	Line	Line MUNDPKTP 69.0 to KACHVILL 69.0 Circuit 1
line_1321	Line	Line MUNDPKTP 69.0 to MUNDPARK 69.0 Circuit 1
line_1322	Line	Line STRAWBTP 69.0 to TONTO 69.0 Circuit 1
line_1323	Line	Line STRAWBTP 69.0 to STRAWBRY 69.0 Circuit 1
line_1324	Line	Line GARLNDAZ 69.0 to WLMSPNGT 69.0 Circuit 1
line_1325	Line	Line SWITZER 69.0 to SANDVIG 69.0 Circuit 1
line_1326	Line	Line CATARACT 69.0 to RAMONOSO 69.0 Circuit 1
line_1327	Line	Line CATARACT 69.0 to VALLE 69.0 Circuit 1
line_1328	Line	Line WILMSTAP 69.0 to COCONINO 69.0 Circuit 1
line_1329	Line	Line WILMSTAP 69.0 to WILIAMS 69.0 Circuit 1
line_1330	Line	Line JEDDITO 69.0 to KEAMCNYN 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1331	Line	Line WODYMTTP	P 69.0 to WOODYMTN 69.0 Circuit 1
line_1332	Line	Line WODYMTTP	P 69.0 to NAVORDAN 69.0 Circuit 1
line_1333	Line	Line INDWELLS	69.0 to JEDDITO 69.0 Circuit 1
line_1334	Line	Line BMTAP	69.0 to CAMERON 69.0 Circuit 1
line_1335	Line	Line WILIAMS	69.0 to GARLNDAZ 69.0 Circuit 1
line_1336	Line	Line SHOWLOW	69.0 to SHUMWAY 69.0 Circuit 1
line_1337	Line	Line SHOWLOW	69.0 to VERNONX 69.0 Circuit 1
line_1338	Line	Line CHOLLA1	69.0 to LEROUX 69.0 Circuit 1
line_1339	Line	Line CHOLLA1	69.0 to RC-WT 69.0 Circuit 1
line_1340	Line	Line CHOLLA1	69.0 to CHOLLA2 69.0 Circuit 1
line_1341	Line	Line SGRLF	69.0 to ZENIFF 69.0 Circuit 1
line_1342	Line	Line SGRLF 6	69.0 to SNOWFLAK 69.0 Circuit 1
line_1343	Line	Line PRECHCYN	69.0 to TONTO 69.0 Circuit 1
line_1344	Line	Line RC-ET 69	69.0 to RC-E 69.0 Circuit 1
line_1345	Line	Line RC-ET 69	69.0 to WOODRUFF 69.0 Circuit 1
line_1346	Line	Line LINDEN	69.0 to SHOWLOW 69.0 Circuit 1
line_1347	Line	Line LINDEN	69.0 to ZENIFF 69.0 Circuit 1
line_1348	Line	Line ZENIFF	69.0 to HEBER 69.0 Circuit 1
line_1349	Line	Line ZENIFF	69.0 to ABITIBI 69.0 Circuit 1
line_1350	Line	Line TWNARRWS	S 69.0 to SUNSHINE 69.0 Circuit 1
line_1351	Line	Line BACON	69.0 to RC-ET 69.0 Circuit 1
line_1352	Line	Line BACON	69.0 to SNOWFLAK 69.0 Circuit 1
line_1353	Line	Line SNOWFLAK	69.0 to SHUMWAY 69.0 Circuit 1
line_1354	Line	Line RC-WT	69.0 to RC-W 69.0 Circuit 1
line_1355	Line	Line RC-WT	69.0 to ZENIFF 69.0 Circuit 1
line_1356	Line	Line CHOLLA2	69.0 to CHLCONST 69.0 Circuit 1
line_1357	Line	Line CHOLLA2	69.0 to LEROUXTP 69.0 Circuit 1
line_1358	Line	Line \$CORONAD	69.0 to ST.JOHNS 69.0 Circuit 1
line_1359	Line	Line WAGONTAP	P 69.0 to WAGONWHL 69.0 Circuit 1
line_1360	Line	Line WAGONTAP	69.0 to PEAPS 69.0 Circuit 1
line_1361	Line	Line WAGONTAP	69.0 to PINETOP 69.0 Circuit 1
line_1362	Line	Line VERNONX	69.0 to GREERTAP 69.0 Circuit 1
line_1363	Line	Line ALCHESAY	69.0 to GREENSPK 69.0 Circuit 1
line_1364	Line	Line ALCHESAY	69.0 to DRUMBEAT 69.0 Circuit 1
line_1365	Line	Line ST.JOHNS	69.0 to CONCHO 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1366	Line	Line SPRNGRMT 69.0 to ALCHESAY 69.0 Circuit 1
line_1367	Line	Line GREERTAP 69.0 to RNDVLLEY 69.0 Circuit 1
line_1368	Line	Line GREENSPK 69.0 to RNDVLLEY 69.0 Circuit 1
line_1369	Line	Line PEAPS 69.0 to SHOWLOW 69.0 Circuit 1
line_1370	Line	Line PEAPS 69.0 to SPRNGRMT 69.0 Circuit 1
line_1371	Line	Line CONCHO 69.0 to VERNONX 69.0 Circuit 1
line_1372	Line	Line PINETOP 69.0 to ALCHESAY 69.0 Circuit 1
line_1373	Line	Line CHINOTAP 69.0 to GRNITCRK 69.0 Circuit 1
line_1374	Line	Line GRNITCRK 69.0 to STMRGRTP 69.0 Circuit 1
line_1375	Line	Line YOUNGSCY 69.0 to PADRE 69.0 Circuit 1
line_1376	Line	Line YOUNGSCY 69.0 to SANDVIG 69.0 Circuit 1
line_1377	Line	Line WINONA 69.0 to YOUNGSCY 69.0 Circuit 1
line_1378	Line	Line POLK W 69.0 to FORTIPLE 69.0 Circuit 1
line_1379	Line	Line GARFIELN 69.0 to GARFIELS 69.0 Circuit 1
line_1380	Line	Line GARFIELS 69.0 to CHURCHTP 69.0 Circuit 1
line_1381	Line	Line GARFIELW 69.0 to GARFIELE 69.0 Circuit 1
line_1382	Line	Line GARFIELW 69.0 to FILMTAP 69.0 Circuit 1
line_1383	Line	Line SHERMANN 69.0 to SHERMANS 69.0 Circuit 1
line_1384	Line	Line METRO C 69.0 to METRO W 69.0 Circuit 1
line_1385	Line	Line METRO C 69.0 to METRO E 69.0 Circuit 1
line_1386	Line	Line MEADOWBN 69.0 to ORANGWDW 69.0 Circuit 1
line_1387	Line	Line MEADOWBC 69.0 to MEADOWBS 69.0 Circuit 1
line_1388	Line	Line MEADOWBC 69.0 to MEADOWBN 69.0 Circuit 1
line_1389	Line	Line MEADOWBC 69.0 to INDINOLC 69.0 Circuit 1
line_1390	Line	Line FORTIPLW 69.0 to FORTIPLE 69.0 Circuit 1
line_1391	Line	Line SHERMANS 69.0 to WPHXAPSN 69.0 Circuit 1
line_1392	Line	Line FILMTAP 69.0 to GARFIELN 69.0 Circuit 1
line_1393	Line	Line FILLMORN 69.0 to FILMTAP 69.0 Circuit 1
line_1394	Line	Line FILLMORN 69.0 to FILLMORS 69.0 Circuit 1
line_1395	Line	Line MCDOWELS 69.0 to ENCANTOE 69.0 Circuit 1
line_1396	Line	Line MCDOWELN 69.0 to WPHXAPSS 69.0 Circuit 1
line_1397	Line	Line MCDWLTPN 69.0 to MCDOWELN 69.0 Circuit 1
line_1398	Line	Line MCDWLTPN 69.0 to LIBIRNTP 69.0 Circuit 1
line_1399	Line	Line BUTTE C 69.0 to BUTTE W 69.0 Circuit 1
line_1400	Line	Line BUTTE E 69.0 to BUTTE C2 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1401	Line	Line BUTTE E 69.0 to OCOTIL S 69.0 Circuit 1
line_1402	Line	Line BUTTE W 69.0 to OCOTIL N 69.0 Circuit 1
line_1403	Line	Line HARBOR C 69.0 to HARBOR E 69.0 Circuit 1
line_1404	Line	Line HARBOR W 69.0 to HARBOR C 69.0 Circuit 1
line_1405	Line	Line BUTTE C2 69.0 to BUTTE C 69.0 Circuit 1
line_1406	Line	Line BUTTE C2 69.0 to OCOTIL C 69.0 Circuit 1
line_1407	Line	Line HOHOKAMN 69.0 to JACKSONE 69.0 Circuit 1
line_1408	Line	Line HOHOKAMS 69.0 to HOHOKAMN 69.0 Circuit 1
line_1409	Line	Line MCDOWELN 69.0 to MCDOWELS 69.0 Circuit 1
line_1410	Line	Line YALE S 69.0 to YALE C 69.0 Circuit 1
line_1411	Line	Line YALE S 69.0 to 23RDSTRE 69.0 Circuit 1
line_1412	Line	Line YALE $\mathrm{N} \quad$ 69.0 to MEADOWBS \quad 69.0 Circuit 1
line_1413	Line	Line YALE C 69.0 to YALE N 69.0 Circuit 1
line_1414	Line	Line ENCANTOW 69.0 to ENCANTOE 69.0 Circuit 1
line_1415	Line	Line OCOTIL C 69.0 to OCOTIL S 69.0 Circuit 1
line_1416	Line	Line OCOTIL C 69.0 to TEMPE W 69.0 Circuit 1
line_1417	Line	Line OCOTIL C 69.0 to TEMPE E 69.0 Circuit 1
line_1418	Line	Line OCOTIL C 69.0 to CAMELBKN 69.0 Circuit 1
line_1419	Line	Line OCOTIL N 69.0 to OCOTIL C 69.0 Circuit 1
line_1420	Line	Line MALINTP 69.0 to DURNGOTP 69.0 Circuit 1
line_1421	Line	Line MALINTP 69.0 to DURNGOT3 69.0 Circuit 1
line_1422	Line	Line 23RDSTRE 69.0 to FORTIPLW 69.0 Circuit 1
line_1423	Line	Line 23RDSTRE 69.0 to 23RDSTRW 69.0 Circuit 1
line_1424	Line	Line 23RDSTRW 69.0 to HARBOR E 69.0 Circuit 1
line_1425	Line	Line OCOTIL S 69.0 to POLK E 69.0 Circuit 1
line_1426	Line	Line INDINOLC 69.0 to INDINOLE 69.0 Circuit 1
line_1427	Line	Line INDINOLC 69.0 to INDINOLW 69.0 Circuit 1
line_1428	Line	Line INDINOLW 69.0 to METRO W 69.0 Circuit 1
line_1429	Line	Line WPHXAPSC 69.0 to MCDWLTPN 69.0 Circuit 1
line_1430	Line	Line WPHXAPSC 69.0 to WPHXAPSS 69.0 Circuit 1
line_1431	Line	Line WPHXAPSN 69.0 to WPHXAPSC 69.0 Circuit 1
line_1432	Line	Line WPHXAPSS 69.0 to MALINTP 69.0 Circuit 1
line_1433	Line	Line DURNGOTP 69.0 to ELWOOD 69.0 Circuit 1
line_1434	Line	Line DURNGOTP 69.0 to DURANGOS 69.0 Circuit 1
line_1435	Line	Line CHURCH C 69.0 to CHURCH W 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1436	Line	Line CHURCH E 69.0 to CHURCH C 69.0 Circuit 1
line_1437	Line	Line DURANGON 69.0 to DURNGOT3 69.0 Circuit 1
line_1438	Line	Line DURANGON 69.0 to DURANGOS 69.0 Circuit 1
line_1439	Line	Line CHURCH W 69.0 to CHURCHTP 69.0 Circuit 1
line_1440	Line	Line JACKSONC 69.0 to JACKSONE 69.0 Circuit 1
line_1441	Line	Line JACKSONC 69.0 to JACKSONW 69.0 Circuit 1
line_1442	Line	Line CHURCHTP 69.0 to GARFIELE 69.0 Circuit 1
line_1443	Line	Line JACKSONW 69.0 to 23RDSTRW 69.0 Circuit 1
line_1444	Line	Line LINWESTN 69.0 to SHERMANN 69.0 Circuit 1
line_1445	Line	Line LINWESTN 69.0 to 23RDSTRE 69.0 Circuit 1
line_1446	Line	Line LINWESTN 69.0 to DURNGOT3 69.0 Circuit 1
line_1447	Line	Line TEMPE W 69.0 to TEMPE E 69.0 Circuit 1
line_1448	Line	Line TEMPE W 69.0 to HOHOKAMS 69.0 Circuit 1
line_1449	Line	Line LINCOLNW 69.0 to LINWESTN 69.0 Circuit 1
line_1450	Line	Line LINCOLNE 69.0 to HARBOR W 69.0 Circuit 1
line_1451	Line	Line LINCOLNE 69.0 to LINCOLNW 69.0 Circuit 1
line_1452	Line	Line LIBIRNTP 69.0 to FILLMORS 69.0 Circuit 1
line_1453	Line	Line LIBIRNTP 69.0 to LIBIRON 69.0 Circuit 1
line_1454	Line	Line CTRYCLBC 69.0 to CHURCH E 69.0 Circuit 1
line_1455	Line	Line CTRYCLBC 69.0 to CTRYCLBN 69.0 Circuit 1
line_1456	Line	Line CTRYCLBC 69.0 to CTRYCLBS 69.0 Circuit 1
line_1457	Line	Line CTRYCLBN 69.0 to METRO E 69.0 Circuit 1
line_1458	Line	Line CTRYCLBN 69.0 to YALE C 69.0 Circuit 1
line_1459	Line	Line CTRYCLBS 69.0 to ENCANTOW 69.0 Circuit 1
line_1460	Line	Line CTRYCLBS 69.0 to INDINOLE 69.0 Circuit 1
line_1461	Line	Line POLK E 69.0 to POLK W 69.0 Circuit 1
line_1462	Line	Line CENTURYW 69.0 to INDBENDW 69.0 Circuit 1
line_1463	Line	Line CENTURYW 69.0 to CENTURYE 69.0 Circuit 1
line_1464	Line	Line ROADRUNS 69.0 to DOUBLTRS 69.0 Circuit 1
line_1465	Line	Line JOMAX E 69.0 to DOVEVLYS 69.0 Circuit 1
line_1466	Line	Line JOMAX W 69.0 to JOMAX E 69.0 Circuit 1
line_1467	Line	Line BLVD E 69.0 to CLINIC E 69.0 Circuit 1
line_1468	Line	Line CLINIC W 69.0 to DESPRNGN 69.0 Circuit 1
line_1469	Line	Line BLVD W 69.0 to BLVD E 69.0 Circuit 1
line_1470	Line	Line BLVD W 69.0 to REACH \quad 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1471	Line	Line SHEA W 69.0 to SHEA E 69.0 Circuit 1
line_1472	Line	Line RAINTRES 69.0 to CHAPRALE 69.0 Circuit 1
line_1473	Line	Line ACOMA W 69.0 to ACOMA E 69.0 Circuit 1
line_1474	Line	Line MUMMYMTW 69.0 to MUMMYMTE 69.0 Circuit 1
line_1475	Line	Line DALE S 69.0 to DALE N 69.0 Circuit 1
line_1476	Line	Line DALE S 69.0 to PINPKEST 69.0 Circuit 1
line_1477	Line	Line DALE S 69.0 to STGCOACH 69.0 Circuit 1
line_1478	Line	Line RAINTREN 69.0 to RAINTRES 69.0 Circuit 1
line_1479	Line	Line GRNITRF 69.0 to ACOMA W 69.0 Circuit 1
line_1480	Line	Line MCORMCKW 69.0 to MCORMCKE 69.0 Circuit 1
line_1481	Line	Line CACTUS C 69.0 to CACTUS W 69.0 Circuit 1
line_1482	Line	Line RAWHIDEW 69.0 to RAWHIDEE 69.0 Circuit 1
line_1483	Line	Line RAWHIDEW 69.0 to DOWNINGW 69.0 Circuit 1
line_1484	Line	Line DESPRNGN 69.0 to DESPRNGS 69.0 Circuit 1
line_1485	Line	Line PINPKEST 69.0 to DOWNINGE 69.0 Circuit 1
line_1486	Line	Line PINPKEST 69.0 to CLGRNDEE 69.0 Circuit 1
line_1487	Line	Line DIXILETE 69.0 to DALE N 69.0 Circuit 1
line_1488	Line	Line DIXILETW 69.0 to JOMAX W 69.0 Circuit 1
line_1489	Line	Line DIXILETW 69.0 to DIXILETE 69.0 Circuit 1
line_1490	Line	Line DIXILETW 69.0 to CAVE CRK 69.0 Circuit 1
line_1491	Line	Line DOUBLTRS 69.0 to CENTURYW 69.0 Circuit 1
line_1492	Line	Line DOWNINGW 69.0 to DOWNINGC 69.0 Circuit 1
line_1493	Line	Line DOWNINGE 69.0 to EASTEN N 69.0 Circuit 1
line_1494	Line	Line DOWNINGC 69.0 to DOWNINGE 69.0 Circuit 1
line_1495	Line	Line DOWNINGC 69.0 to THOMPK W 69.0 Circuit 1
line_1496	Line	Line ALTADENW 69.0 to ALTADENE 69.0 Circuit 1
line_1497	Line	Line ALTADENE 69.0 to SHEA E 69.0 Circuit 1
line_1498	Line	Line CACTUS W 69.0 to RAINTREN 69.0 Circuit 1
line_1499	Line	Line PINNPK E 69.0 to RAWHIDEE 69.0 Circuit 1
line_1500	Line	Line PINNPK E 69.0 to GRNITRF 69.0 Circuit 1
line_1501	Line	Line PINNPK E 69.0 to PINPKEST 69.0 Circuit 1
line_1502	Line	Line PINNPK E 69.0 to PINNPK W 69.0 Circuit 1
line_1503	Line	Line CACTUS E 69.0 to SHEA W 69.0 Circuit 1
line_1504	Line	Line CACTUS E 69.0 to CACTUS C 69.0 Circuit 1
line_1505	Line	Line CACTUS E 69.0 to CHAPRALW 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1506	Line	Line PINNPK W	69.0 to JOMAX E 69.0 Circuit 1
line_1507	Line	Line PINNPK W	69.0 to BLVD E 69.0 Circuit 1
line_1508	Line	Line PINNPK W	69.0 to DSRTRDGW 69.0 Circuit 1
line_1509	Line	Line THOMPK W	69.0 to THOMPK E 69.0 Circuit 1
line_1510	Line	Line THOMPK E	69.0 to ALTADENW 69.0 Circuit 1
line_1511	Line	Line DSRTRDGW	69.0 to DSRTRDGE 69.0 Circuit 1
line_1512	Line	Line ROADRUNC	69.0 to ROADRUNS 69.0 Circuit 1
line_1513	Line	Line ROADRUNC	69.0 to ROADRUNN 69.0 Circuit 1
line_1514	Line	Line INDBENDE	69.0 to DESPRNGS 69.0 Circuit 1
line_1515	Line	Line CAMELBKC	69.0 to MUMMYMTE 69.0 Circuit 1
line_1516	Line	Line CAMELBKN	69.0 to CAMELBKC 69.0 Circuit 1
line_1517	Line	Line CAMELBKS	69.0 to MCORMCKE 69.0 Circuit 1
line_1518	Line	Line CAMELBKS	69.0 to CAMELBKC 69.0 Circuit 1
line_1519	Line	Line REACH	69.0 to DSRTRDGE 69.0 Circuit 1
line_1520	Line	Line INDBENDW	69.0 to INDBENDE 69.0 Circuit 1
line_1521	Line	Line STGCOACH	69.0 to DALE N 69.0 Circuit 1
line_1522	Line	Line EASTRNOF	69.0 to DESPRNGS 69.0 Circuit 1
line_1523	Line	Line PARADS W	69.0 to ROADRUNC 69.0 Circuit 1
line_1524	Line	Line PARADS E	69.0 to REACH 69.0 Circuit 1
line_1525	Line	Line PARADS E	69.0 to EASTRNOF 69.0 Circuit 1
line_1526	Line	Line PARADS E	69.0 to PARADS C 69.0 Circuit 1
line_1527	Line	Line PARADS C	69.0 to PARADS W 69.0 Circuit 1
line_1528	Line	Line EASTEN S	69.0 to ALTADENW 69.0 Circuit 1
line_1529	Line	Line EASTEN N	69.0 to EASTEN S 69.0 Circuit 1
line_1530	Line	Line CHAPRALW	69.0 to MCORMCKW 69.0 Circuit 1
line_1531	Line	Line CHAPRALW	69.0 to CHAPRALE 69.0 Circuit 1
line_1532	Line	Line CHAPRALE	69.0 to CENTURYE 69.0 Circuit 1
line_1533	Line	Line CENTURYE	69.0 to ACOMA E 69.0 Circuit 1
line_1534	Line	Line CLGRNDEW	69.0 to CLGRNDEE 69.0 Circuit 1
line_1535	Line	Line NVALLEYS	69.0 to CLGRNDEW 69.0 Circuit 1
line_1536	Line	Line NVALLEYS	69.0 to NVALLEYN 69.0 Circuit 1
line_1537	Line	Line HONYWLTP	69.0 to HONYWELS 69.0 Circuit 1
line_1538	Line	Line HONYWLTP	69.0 to CANAL C 69.0 Circuit 1
line_1539	Line	Line LOMAVSTE	69.0 to LOMAVSTW 69.0 Circuit 1
line_1540	Line	Line LOMAVSTE	69.0 to LVISTTAP 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1541	Line	Line UNIONHLE	69.0 to UNIONHLW 69.0 Circuit 1
line_1542	Line	Line UNIONHLE	69.0 to LOOKOUTN 69.0 Circuit 1
line_1543	Line	Line UNIONHLE	69.0 to TURF 69.0 Circuit 1
line_1544	Line	Line LVISTTAP	69.0 to HONYWLTP 69.0 Circuit 1
line_1545	Line	Line LVISTTAP	69.0 to HONYWELN 69.0 Circuit 1
line_1546	Line	Line CANAL C	69.0 to CANAL E 69.0 Circuit 1
line_1547	Line	Line CANAL C	69.0 to CANAL W 69.0 Circuit 1
line_1548	Line	Line LONEPK E	69.0 to PARADS C 69.0 Circuit 1
line_1549	Line	Line LONEPK E	69.0 to LONEPK W 69.0 Circuit 1
line_1550	Line	Line LONEPK E	69.0 to BUFFALOW 69.0 Circuit 1
line_1551	Line	Line LONEPK W	69.0 to UNIONHLW 69.0 Circuit 1
line_1552	Line	Line LONEPK W	69.0 to AQUEDUCW 69.0 Circuit 1
line_1553	Line	Line LOOKOUTN	69.0 to LOOKOUTS 69.0 Circuit 1
line_1554	Line	Line STOUT E	69.0 to STOUT W 69.0 Circuit 1
line_1555	Line	Line STOUT E	69.0 to ROSEGRDE 69.0 Circuit 1
line_1556	Line	Line LOOKOUTS	69.0 to MOONVALN 69.0 Circuit 1
line_1557	Line	Line CHERYL S	69.0 to CHERYL N 69.0 Circuit 1
line_1558	Line	Line ORANGWDE	69.0 to ORANGTAP 69.0 Circuit 1
line_1559	Line	Line ORANGWDE	69.0 to ORANGWDW 69.0 Circuit 1
line_1560	Line	Line ORANGWDC	69.0 to ORANGWDE 69.0 Circuit 1
line_1561	Line	Line ORANGWDC	69.0 to ORANGWDW 69.0 Circuit 1
line_1562	Line	Line ORANGTAP	69.0 to MUMMYMTW 69.0 Circuit 1
line_1563	Line	Line HONYWELN	69.0 to HONYWELS 69.0 Circuit 1
line_1564	Line	Line ARROYO W	69.0 to LOMAVSTW 69.0 Circuit 1
line_1565	Line	Line ROSEGRDE	69.0 to NVALLEYN 69.0 Circuit 1
line_1566	Line	Line ROSEGRDE	69.0 to ROSEGRDW 69.0 Circuit 1
line_1567	Line	Line SUNYSLPW	69.0 to ROADRUNN 69.0 Circuit 1
line_1568	Line	Line SUNYSLPW	69.0 to ALEXNDR 69.0 Circuit 1
line_1569	Line	Line ADOBE N	69.0 to STOUT W 69.0 Circuit 1
line_1570	Line	Line ADOBE N	69.0 to ADOBE S 69.0 Circuit 1
line_1571	Line	Line ADOBE N	69.0 to BSCTFLAT 69.0 Circuit 1
line_1572	Line	Line SKUNCRKS	69.0 to SKUNCRKN 69.0 Circuit 1
line_1573	Line	Line SKUNCRKS	69.0 to GRNBRR N 69.0 Circuit 1
line_1574	Line	Line YORKSHIR	69.0 to UNIONHLW 69.0 Circuit 1
line_1575	Line	Line DEERVALC	69.0 to DEERVALW 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1576	Line	Line ALEXNDR	69.0 to CANAL E 69.0 Circuit 2
line_1577	Line	Line ALEXNDR	69.0 to CANAL W 69.0 Circuit 1
line_1578	Line	Line ALEXNDR	69.0 to CHERYL S 69.0 Circuit 1
line_1579	Line	Line BUFFALOE	69.0 to REACH 69.0 Circuit 1
line_1580	Line	Line BUFFALOE	69.0 to BUFFALOW 69.0 Circuit 1
line_1581	Line	Line GRNBRR N	69.0 to GRNBRR S 69.0 Circuit 1
line_1582	Line	Line GRNBRR N	69.0 to GRENWAYW 69.0 Circuit 1
line_1583	Line	Line GRISWLD	69.0 to ORANGWDC 69.0 Circuit 1
line_1584	Line	Line GRENWAYW	V 69.0 to GRENWAYC 69.0 Circuit 1
line_1585	Line	Line GRENWAYE	69.0 to LOMAVSTW 69.0 Circuit 1
line_1586	Line	Line GRENWAYC	69.0 to GRENWAYE 69.0 Circuit 1
line_1587	Line	Line SUNYSLPE	69.0 to SUNYSLPW 69.0 Circuit 1
line_1588	Line	Line SUNYSLPE	69.0 to GRISWLD 69.0 Circuit 1
line_1589	Line	Line SUNYSLPE	69.0 to SHAW N 69.0 Circuit 1
line_1590	Line	Line MONTECRN	69.0 to MONTECRS 69.0 Circuit 1
line_1591	Line	Line MONTECRS	69.0 to LOMAVSTE 69.0 Circuit 1
line_1592	Line	Line MOONVALS	69.0 to SUNYSLPW 69.0 Circuit 1
line_1593	Line	Line MOONVALS	69.0 to MOONVALN 69.0 Circuit 1
line_1594	Line	Line SHAW S	69.0 to CHERYL N 69.0 Circuit 1
line_1595	Line	Line SHAW S	69.0 to SHAW N 69.0 Circuit 1
line_1596	Line	Line AQUEDUCE	69.0 to CLGRNDEW 69.0 Circuit 1
line_1597	Line	Line AQUEDUCE	69.0 to AQUEDUCW 69.0 Circuit 1
line_1598	Line	Line DEERVALW	69.0 to TURF 69.0 Circuit 1
line_1599	Line	Line DEERVALW	69.0 to ADOBE S 69.0 Circuit 1
line_1600	Line	Line DEERVALW	69.0 to SKUNCRKN 69.0 Circuit 1
line_1601	Line	Line DEERVALE	69.0 to ROSEGRDW 69.0 Circuit 1
line_1602	Line	Line DEERVALE	69.0 to YORKSHIR 69.0 Circuit 1
line_1603	Line	Line DEERVALE	69.0 to DEERVALC 69.0 Circuit 1
line_1604	Line	Line DEERVALE	69.0 to MONTECRN 69.0 Circuit 1
line_1605	Line	Line HUMBUG	69.0 to LAKESIDE 69.0 Circuit 1
line_1606	Line	Line RACEWAY	69.0 to HUMBUG 69.0 Circuit 1
line_1607	Line	Line RACEWAY	69.0 to PYRMID W 69.0 Circuit 1
line_1608	Line	Line RACEWAY	69.0 to CLDRWD 69.0 Circuit 1
line_1609	Line	Line DOVEVLYN	69.0 to DOVEVLYS 69.0 Circuit 1
line_1610	Line	Line HUMBUGTP	69.0 to NEWRVR S 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1611	Line	Line GAVILNPK 69.0 to DOVEVLYN 69.0 Circuit 1
line_1612	Line	Line GAVILNPK 69.0 to NEWRVR N 69.0 Circuit 1
line_1613	Line	Line PIONEERW 69.0 to PIONEERE 69.0 Circuit 1
line_1614	Line	Line NEWRVR N 69.0 to WLDBURRO 69.0 Circuit 1
line_1615	Line	Line NEWRVR S 69.0 to NEWRVR N 69.0 Circuit 1
line_1616	Line	Line DEADMNWN 69.0 to NEWRVR S 69.0 Circuit 1
line_1617	Line	Line DEADMNWN 69.0 to DEADMNWS 69.0 Circuit 1
line_1618	Line	Line LAKESIDE 69.0 to HUMBUGTP 69.0 Circuit 1
line_1619	Line	Line HDGPETHE 69.0 to PYRMID W 69.0 Circuit 1
line_1620	Line	Line HDGPETHW 69.0 to HDGPETHE 69.0 Circuit 1
line_1621	Line	Line CLINIC E 69.0 to CLINIC W 69.0 Circuit 1
line_1622	Line	Line WLDBURRO 69.0 to ROCKSPNG 69.0 Circuit 1
line_1623	Line	Line BSCTFLAT 69.0 to GATEWAYW 69.0 Circuit 1
line_1624	Line	Line GATEWAYW 69.0 to PIONEERW 69.0 Circuit 1
line_1625	Line	Line PYRMID W 69.0 to BSCTFLAT 69.0 Circuit 1
line_1626	Line	Line ROCKSPNG 69.0 to SYCAMOR 69.0 Circuit 1
line_1627	Line	Line PIONEERE 69.0 to DEADMNWS 69.0 Circuit 1
line_1628	Line	Line PEORIA E 69.0 to AFRAAPSS 69.0 Circuit 1
line_1629	Line	Line PLEASANT 69.0 to ARROWHDE 69.0 Circuit 1
line_1630	Line	Line WESTWING 69.0 to CLDRWD 69.0 Circuit 1
line_1631	Line	Line WESTWING 69.0 to WESTBRKW 69.0 Circuit 1
line_1632	Line	Line WESTWING 69.0 to HVT 69.0 Circuit 1
line_1633	Line	Line WESTWING 69.0 to RIOVISTE 69.0 Circuit 1
line_1634	Line	Line MARINETN 69.0 to MARINETS 69.0 Circuit 1
line_1635	Line	Line DYSART W 69.0 to HEARNTAP 69.0 Circuit 1
line_1636	Line	Line DYSART W 69.0 to DYSART C 69.0 Circuit 1
line_1637	Line	Line STARDSTE 69.0 to STARDSTW 69.0 Circuit 1
line_1638	Line	Line ARROWHDW 69.0 to ARROWHDE 69.0 Circuit 1
line_1639	Line	Line DYSARTTP 69.0 to LUKFLDTP 69.0 Circuit 1
line_1640	Line	Line DYSARTTP 69.0 to LUKEFELD 69.0 Circuit 1
line_1641	Line	Line LUKFLDTP 69.0 to LUKEFELD 69.0 Circuit 1
line_1642	Line	Line HEARN E 69.0 to HEARN W 69.0 Circuit 1
line_1643	Line	Line HEARN E 69.0 to JAVELINS 69.0 Circuit 1
line_1644	Line	Line WADDELL 69.0 to WDL TAP 69.0 Circuit 1
line_1645	Line	Line BELL N 69.0 to PLEASANT 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1646	Line	Line BELL N 6	69.0 to MTNVIEWE 69.0 Circuit 1
line_1647	Line	Line GLNDTAP	69.0 to LUKFLDTP 69.0 Circuit 1
line_1648	Line	Line MERIDTAP	69.0 to GLNDTAP 69.0 Circuit 1
line_1649	Line	Line AFRAAPSN	69.0 to ARROYO W 69.0 Circuit 1
line_1650	Line	Line AFRAAPSN	69.0 to AFRAAPSS 69.0 Circuit 1
line_1651	Line	Line AFRAAPSS	69.0 to GLNDTAP 69.0 Circuit 1
line_1652	Line	Line JAVELINN	69.0 to JAVELINS 69.0 Circuit 1
line_1653	Line	Line HEARNTAP	69.0 to HEARN W 69.0 Circuit 1
line_1654	Line	Line MCMICKNE	69.0 to PATTONTP 69.0 Circuit 1
line_1655	Line	Line MCMICKNW	W 69.0 to WESTWING 69.0 Circuit 1
line_1656	Line	Line MCMICKNW	W 69.0 to MCMICKNE 69.0 Circuit 1
line_1657	Line	Line DELRIO W	69.0 to PEORIA W 69.0 Circuit 1
line_1658	Line	Line DELRIO W	69.0 to BELL S 69.0 Circuit 1
line_1659	Line	Line WESTBRKW	69.0 to WESTBRKE 69.0 Circuit 1
line_1660	Line	Line EL SOLMN	69.0 to MARINTAP 69.0 Circuit 1
line_1661	Line	Line EL SOLMN	69.0 to MTNVIEWW 69.0 Circuit 1
line_1662	Line	Line EL SOLMS	69.0 to MARINETS 69.0 Circuit 1
line_1663	Line	Line EL SOLMS	69.0 to MERIDTAP 69.0 Circuit 1
line_1664	Line	Line EL SOLMS	69.0 to EL SOLMN 69.0 Circuit 1
line_1665	Line	Line EL SOLMS	69.0 to OLIVEAPS 69.0 Circuit 1
line_1666	Line	Line EL SOLMS	69.0 to WDL TAP 69.0 Circuit 1
line_1667	Line	Line FRT 69.0	990 to SNVLY 69.0 Circuit 1
line_1668	Line	Line WESTBRKE	69.0 to ARROWHDW 69.0 Circuit 1
line_1669	Line	Line PEORIA W	69.0 to PEORIA E 69.0 Circuit 1
line_1670	Line	Line SURPRISC	69.0 to STARDSTE 69.0 Circuit 1
line_1671	Line	Line SURPRISC	69.0 to BDSLYTP1 69.0 Circuit 1
line_1672	Line	Line SURPRISC	69.0 to SURPRISS 69.0 Circuit 1
line_1673	Line	Line SURPRISN	69.0 to SURPRISC 69.0 Circuit 1
line_1674	Line	Line SURPRISN	69.0 to RIOVISTE 69.0 Circuit 1
line_1675	Line	Line SURPRISN	69.0 to SPNGARDS 69.0 Circuit 1
line_1676	Line	Line HATFELD	69.0 to HDGPETHW 69.0 Circuit 1
line_1677	Line	Line MARINTAP	69.0 to MARINETS 69.0 Circuit 1
line_1678	Line	Line MARINTAP	69.0 to DYSART E 69.0 Circuit 1
line_1679	Line	Line BDSLYTP1	69.0 to BEARDSLY 69.0 Circuit 1
line_1680	Line	Line BDSLYTP1	69.0 to MCMICKNE 69.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1681	Line	Line HVT 69.0 to HATFELD 69.0 Circuit 1
line_1682	Line	Line SURPRISS 69.0 to JAVELINN 69.0 Circuit 1
line_1683	Line	Line SURPRISS 69.0 to DYSART C 69.0 Circuit 1
line_1684	Line	Line RIOVISTW 69.0 to RIOVISTE 69.0 Circuit 1
line_1685	Line	Line MTNVIEWE 69.0 to MTNVIEWW 69.0 Circuit 1
line_1686	Line	Line MTNVIEWW 69.0 to RIOVISTW 69.0 Circuit 1
line_1687	Line	Line DYSART E 69.0 to VARNEY E 69.0 Circuit 1
line_1688	Line	Line OLIVEAPS 69.0 to MARINETN 69.0 Circuit 1
line_1689	Line	Line OLIVEAPS 69.0 to AFRAAPSS 69.0 Circuit 1
line_1690	Line	Line BELL S 69.0 to GRNBRR S 69.0 Circuit 1
line_1691	Line	Line BELL S 69.0 to BELL N 69.0 Circuit 1
line_1692	Line	Line DYSART C 69.0 to DYSART E 69.0 Circuit 1
line_1693	Line	Line STARDSTW 69.0 to SPNGARDN 69.0 Circuit 1
line_1694	Line	Line WDL TAP 69.0 to HEARNTAP 69.0 Circuit 1
line_1695	Line	Line VARNEY E 69.0 to DYSARTTP 69.0 Circuit 1
line_1696	Line	Line SPNGARDS 69.0 to SPNGARDN 69.0 Circuit 1
line_1697	Line	Line WHTNKAPN 69.0 to WS99 69.0 Circuit 1
line_1698	Line	Line WS99 69.0 to SARIVALS 69.0 Circuit 1
line_1699	Line	Line WHTNKAPN 69.0 to LITCHFDE 69.0 Circuit 1
line_1700	Line	Line COLTER N 69.0 to AFRAAPSS 69.0 Circuit 1
line_1701	Line	Line COLTER N 69.0 to COLTER S 69.0 Circuit 1
line_1702	Line	Line SEDELLA 69.0 to PLMVLY 69.0 Circuit 1
line_1703	Line	Line SARIVALS 69.0 to BRADLEY 69.0 Circuit 1
line_1704	Line	Line SARIVALN 69.0 to SARIVALS 69.0 Circuit 1
line_1705	Line	Line PIMA S 69.0 to PLMVLY 69.0 Circuit 1
line_1706	Line	Line PIMA 69.0 to PIMA S 69.0 Circuit 1
line_1707	Line	Line PIMA 69.0 to PEBCRK W 69.0 Circuit 1
line_1708	Line	Line WS3 TAP 69.0 to SEDELLA 69.0 Circuit 1
line_1709	Line	Line WS3 TAP 69.0 to COTBUKTP 69.0 Circuit 1
line_1710	Line	Line BRADLEY 69.0 to ESTRLLTA 69.0 Circuit 1
line_1711	Line	Line LITCHFDE 69.0 to LITCHFDW 69.0 Circuit 1
line_1712	Line	Line WHTNKAPS 69.0 to WHTNKAPN 69.0 Circuit 1
line_1713	Line	Line WHTNKAPS 69.0 to COLTER S 69.0 Circuit 1
line_1714	Line	Line WHTNKAPS 69.0 to COLDWTRE 69.0 Circuit 1
line_1715	Line	Line COTBUKTP 69.0 to PLMVLY 69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1716	Line	Line COTBUKTP	69.0 to COTPERTP 69.0 Circuit 1
line_1717	Line	Line COTPERTP	69.0 to SARIVALN 69.0 Circuit 1
line_1718	Line	Line COLDWTRW	69.0 to BULARD N 69.0 Circuit 1
line_1719	Line	Line WLDFLWRN	69.0 to SARIVALN 69.0 Circuit 1
line_1720	Line	Line WLDFLWRN	69.0 to WLDFLWRS 69.0 Circuit 1
line_1721	Line	Line COLDWTRE	69.0 to COLDWTRW 69.0 Circuit 1
line_1722	Line	Line BULARD N	69.0 to WLDFLWRS 69.0 Circuit 1
line_1723	Line	Line PEBCRK E	69.0 to LITCHFDW 69.0 Circuit 1
line_1724	Line	Line PEBCRK E	69.0 to PEBCRK W 69.0 Circuit 1
line_1725	Line	Line BUCKEYE	69.0 to WATSON W 69.0 Circuit 1
line_1726	Line	Line BUCKEYE	69.0 to TRT TEMP 69.0 Circuit 1
line_1727	Line	Line BUCKEYE	69.0 to ROBBINBT 69.0 Circuit 1
line_1728	Line	Line BUCKEYE	69.0 to K685-GP 69.0 Circuit 1
line_1729	Line	Line BUCKEYE	69.0 to SV4 69.0 Circuit 1
line_1730	Line	Line WATSON E	69.0 to WATSON W 69.0 Circuit 1
line_1731	Line	Line PERRYVIL	69.0 to COTPERTP 69.0 Circuit 1
line_1732	Line	Line TUTHIL S	69.0 to WATSON E 69.0 Circuit 1
line_1733	Line	Line TUTHIL N	69.0 to WS3 TAP 69.0 Circuit 1
line_1734	Line	Line TUTHIL N	69.0 to TUTHIL S 69.0 Circuit 1
line_1735	Line	Line AZTECTAP	69.0 to AZTEC 69.0 Circuit 1
line_1736	Line	Line AZTECTAP	69.0 to HORN 69.0 Circuit 1
line_1737	Line	Line BUNYAN	69.0 to CNTYLN 69.0 Circuit 1
line_1738	Line	Line HARQUATP	69.0 to HARQUAHA 69.0 Circuit 1
line_1739	Line	Line HARQUATP	69.0 to SADDLEMT 69.0 Circuit 1
line_1740	Line	Line BASELIN	69.0 to PVNGPUMP 69.0 Circuit 1
line_1741	Line	Line TRT TEMP	69.0 to DSRTSKY 69.0 Circuit 1
line_1742	Line	Line ROBBINBT	69.0 to RAINBWTP 69.0 Circuit 1
line_1743	Line	Line PERYVLTP	69.0 to WATSON W 69.0 Circuit 1
line_1744	Line	Line PERYVLTP	69.0 to PERRYVIL 69.0 Circuit 1
line_1745	Line	Line GILABEND	69.0 to PALOMA 69.0 Circuit 1
line_1746	Line	Line GILABEND	69.0 to THAYERAP 69.0 Circuit 1
line_1747	Line	Line K685-GP	69.0 to ROBBINBT 69.0 Circuit 1
line_1748	Line	Line K685-BZ	69.0 to BASELIN 69.0 Circuit 1
line_1749	Line	Line K685-BZ	69.0 to K685-GP 69.0 Circuit 1
line_1750	Line	Line PALOMA	69.0 to BUNYAN 69.0 Circuit 1

2014 Single Contingency List (Category B)				
Contingency Number	Type	Contingency Name		
line_1751	Line	Line PHILPSAZ	69.0 to WINTRBRG	69.0 Circuit 1
line_1752	Line	Line PHILPSAZ	69.0 to TONOPAH1	69.0 Circuit 1
line_1753	Line	Line THAYERAP	69.0 to AJO TAP	69.0 Circuit 1
line_1754	Line	Line WINTERTP	69.0 to WINTRBRG	69.0 Circuit 1
line_1755	Line	Line WINTERTP	69.0 to ARLNGTON	69.0 Circuit 1
line_1756	Line	Line WINTERTP	69.0 to PVNGPUMP	69.0 Circuit 1
line_1757	Line	Line DARBY	69.0 to DARBYTAP	69.0 Circuit 1
line_1758	Line	Line DARBYTAP	69.0 to AIC TAP	69.0 Circuit 1
line_1759	Line	Line AJO TAP	69.0 to AIC TAP 69	. 0 Circuit 1
line_1760	Line	Line AJO 69.0	. 0 to WHY 69.0	ircuit 1
line_1761	Line	Line AJO 69.0	. 0 to AJO TAP 69.0	Circuit 1
line_1762	Line	Line CNTYLN	69.0 to HYDERTAP	69.0 Circuit 1
line_1763	Line	Line PVNGPUMP	69.0 to GILLWEST	69.0 Circuit 1
line_1764	Line	Line DSRTSKY	69.0 to PHILPSAZ	69.0 Circuit 1
line_1765	Line	Line HYDERTAP	69.0 to AZTECTAP	69.0 Circuit 1
line_1766	Line	Line HYDERTAP	69.0 to HYDER	69.0 Circuit 1
line_1767	Line	Line VALNCIA	69.0 to BASELIN	69.0 Circuit 1
line_1768	Line	Line VALNCIA	69.0 to PERYVLTP	69.0 Circuit 1
line_1769	Line	Line VALNCIA	69.0 to K685-BZ	. 0 Circuit 1
line_1770	Line	Line AIC 69.0	0 to DARBYTAP 69	. 0 Circuit 1
line_1771	Line	Line AIC TAP	69.0 to WHY 69.0	Circuit 1
line_1772	Line	Line COTN CTR	69.0 to GILABEND	69.0 Circuit 1
line_1773	Line	Line SADDLEMT	69.0 to CNTYLN	69.0 Circuit 1
line_1774	Line	Line GILLESPI	69.0 to PATTERSN	69.0 Circuit 1
line_1775	Line	Line GILLESPI	69.0 to GILLWEST	69.0 Circuit 1
line_1776	Line	Line GILLESPI	69.0 to COTN CTR	69.0 Circuit 1
line_1777	Line	Line TONOPAH1	69.0 to HARQUATP	69.0 Circuit 1
line_1778	Line	Line RAINBWTP	69.0 to PATTERSN	69.0 Circuit 1
line_1779	Line	Line RAINBWTP	69.0 to RNBOWVLY	69.0 Circuit 1
line_1780	Line	Line PAPAGOBT	69.0 to PAPGOAPW	69.0 Circuit 1
line_1781	Line	Line WHTNKAPS	69.0 to WHITETNK	69.0 Circuit 1
line_1782	Line	Line AF-STEAM	69.0 to AFRAAPSN	69.0 Circuit 1
line_1783	Line	Line AF-STEAM	69.0 to AFRAAPSS	69.0 Circuit 1
line_1784	Line	Line ORANGTAP	69.0 to SQUAWTAP	69.0 Circuit 1
line_1785	Line	Line KYRENEGT	69.0 to OMEGA	69.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1786	Line	Line RIVIERA	69.0 to BIG BEND 69.0 Circuit 1
line_1787	Line	Line RIVIERA	69.0 to CMPMOHAV 69.0 Circuit 1
line_1788	Line	Line RIVIERA	69.0 to SLCRKTAP 69.0 Circuit 1
line_1789	Line	Line RED TAIL	69.0 to CIRCLE_I 69.0 Circuit 1
line_1790	Line	Line TOPOCK	69.0 to SWAN 69.0 Circuit 1
line_1791	Line	Line FREEMAN	69.0 to SAFFORD 69.0 Circuit 1
line_1792	Line	Line SAFFTAP2	69.0 to SAFFORD 69.0 Circuit 2
line_1793	Line	Line AIRPORT	69.0 to RIVIERA 69.0 Circuit 1
line_1794	Line	Line B.WILAMS	69.0 to WELFLDTP 69.0 Circuit 1
line_1795	Line	Line CMPMOHAV	69.0 to WILVALTP 69.0 Circuit 1
line_1796	Line	Line SLCRKTAP	69.0 to MEDLIN 69.0 Circuit 1
line_1797	Line	Line SLCRKTAP	69.0 to SILVRCRK 69.0 Circuit 1
line_1798	Line	Line WELFIELD	69.0 to NATCORAL 69.0 Circuit 1
line_1799	Line	Line WILVALTP	69.0 to SWAN 69.0 Circuit 1
line_1800	Line	Line WILVALTP	69.0 to WILLOWVY 69.0 Circuit 1
line_1801	Line	Line WELFLDTP	69.0 to WELFIELD 69.0 Circuit 1
line_1802	Line	Line WELFLDTP	69.0 to OCB001 69.0 Circuit 1
line_1803	Line	Line STEWRTTP	69.0 to HOOKERTP 69.0 Circuit 1
line_1804	Line	Line STEWRTTP	69.0 to MORTENSN 69.0 Circuit 1
line_1805	Line	Line CIRCLE_I	69.0 to STEWART 69.0 Circuit 1
line_1806	Line	Line RAMSEY	69.0 to HEREFORD 69.0 Circuit 1
line_1807	Line	Line GARDENSW	69.0 to RAMSEY 69.0 Circuit 1
line_1808	Line	Line STEWART	69.0 to STEWRTTP 69.0 Circuit 1
line_1809	Line	Line S.CRUZJT	69.0 to ALAMO 69.0 Circuit 1
line_1810	Line	Line ROUNDVLY	69.0 to NELSON 69.0 Circuit 1
line_1811	Line	Line PLANETTP	69.0 to B.WILAMS 69.0 Circuit 1
line_1812	Line	Line DAVIS 6	69.0 to AIRPORT 69.0 Circuit 1
line_1813	Line	Line HARCUVAR	230.0 to HARCU AZ 230.0 Circuit 1
line_1814	Line	Line HASSYTAP	230.0 to HASSY AZ 230.0 Circuit 1
line_1815	Line	Line BRADY	115.0 to BRADYAZ 115.0 Circuit 1
line_1816	Line	Line PICACHOW	115.0 to PICACHAZ 115.0 Circuit 1
line_1817	Line	Line RED ROCK	115.0 to REDRCKAZ 115.0 Circuit 1
line_1818	Line	Line TWINPEAK	115.0 to TWINPKAZ 115.0 Circuit 1
line_1819	Line	Line BRAWLEY	115.0 to BRAWLYAZ 115.0 Circuit 1
line_1820	Line	Line SANDARIO	115.0 to SANDARAZ 115.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1821	Line	Line SANXAVER	115.0 to SANXAVAZ 115.0 Circuit 1
line_1822	Line	Line BLACKMTN	115.0 to BLKMTNAZ 115.0 Circuit 1
line_1823	Line	Line SNYDHILL	115.0 to SNYDHLAZ 115.0 Circuit 1
line_1824	Line	Line FLAGSTAF	345.0 to YOUNGSCY 345.0 Circuit 1
line_1825	Line	Line DSRTSKY	69.0 to BADGER 69.0 Circuit 1
line_1826	Line	Line BADGER	69.0 to PHILPSAZ 69.0 Circuit 1
line_1827	Line	Line MCMICKNW	69.0 to FARMERTP 69.0 Circuit 1
line_1828	Line	Line FARMERTP	69.0 to FRT 69.0 Circuit 1
line_1829	Line	Line FARMERTP	69.0 to FARMERAP 69.0 Circuit 1
line_1830	Line	Line EASTEN S	69.0 to RAINTREN 69.0 Circuit 1
line_1831	Line	Line ESTRLLTA	69.0 to WILLISAZ 69.0 Circuit 1
line_1832	Line	Line GATEWAYW	69.0 to GAVILNPK 69.0 Circuit 1
line_1833	Line	Line VLYFARMS	69.0 to SE6 69.0 Circuit 1
line_1834	Line	Line SE6 69.0	to MERRIL 69.0 Circuit 1
line_1835	Line	Line NILAND	161.0 to BLYTHE 161.0 Circuit 1
line_1836	Line	Line KNOB 161	161.0 to PILOTKNB 161.0 Circuit 1
line_1837	Line	Line CTRYCLBC	69.0 to CHURCH E 69.0 Circuit 2
line_1838	Line	Line HASSYAMP	500.0 to AVSOLAR 500.0 Circuit 1
line_1839	Line	Line AVSOLAR	115.0 to AVSOLAR2 115.0 Circuit 1
line_1840	Line	Line N.GILA 6	9.0 to DSRTSND 69.0 Circuit 1
line_1841	Line	Line DSRTSND	69.0 to FOOTHILS 69.0 Circuit 1
line_1842	Line	Line YUCCA161	161.0 to PILOTKNB 161.0 Circuit 1
line_1843	Line	Line CVSUB92	92.0 to COACHELLASW 92.0 Circuit 1
line_1844	Line	Line CVSUB92	92.0 to COACHELLASW 92.0 Circuit 2
line_1845	Line	Line CVSUB92	92.0 to NEW_JACKSON 92.0 Circuit 1
line_1846	Line	Line CVSUB92	92.0 to DESERT_VIEW 92.0 Circuit 1
line_1847	Line	Line AVE58 92.0	2.0 to JEFFERSON 92.0 Circuit 1
line_1848	Line	Line AVE58 92.0	2.0 to RTAP8 92.0 Circuit 1
line_1849	Line	Line AVE58 92.0	2.0 to RTP6OASS 92.0 Circuit 1
line_1850	Line	Line USNAF	92.0 to DIXIELAN 92.0 Circuit 1
line_1851	Line	Line USNAF	92.0 to TERMINAL 92.0 Circuit 1
line_1852	Line	Line JEFFERSON	92.0 to MARSHALL 92.0 Circuit 1
line_1853	Line	Line LAQUINTA	92.0 to N.LAQUINTA 92.0 Circuit 1
line_1854	Line	Line LAQUINTA	92.0 to MARSHALL 92.0 Circuit 1
line_1855	Line	Line RTAP8 92.0	2.0 to COACHELLASW 92.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1891	Line	Line ELSTEAMP 92.0 to TERMINAL 92.0 Circuit 2
line_1892	Line	Line ELSTEAMP 92.0 to HEBER 92.0 Circuit 1
line_1893	Line	Line HEBER 92.0 to HEBERSCE 92.0 Circuit 1
line_1894	Line	Line ELSTEAMP 92.0 to HOLTVILLE 92.0 Circuit 1
line_1895	Line	Line ELSTEAMP 92.0 to CLARK 92.0 Circuit 1
line_1896	Line	Line ELSTEAMP 92.0 to ORMAT92 92.0 Circuit 1
line_1897	Line	Line ELSTEAMP 92.0 to WSTBIOTP 92.0 Circuit 2
line_1898	Line	Line ELSTEAMP 92.0 to ATEN 92.0 Circuit 1
line_1899	Line	Line ELSTEAMP 92.0 to NEW_IMPERIAL 92.0 Circuit 1
line_1900	Line	Line ELSTEAMP 92.0 to CENTRAL 92.0 Circuit 1
line_1901	Line	Line TERMINAL 92.0 to EUCLID 92.0 Circuit 1
line_1902	Line	Line EUCLID 92.0 to DAHLIA 92.0 Circuit 1
line_1903	Line	Line HEBERSCE 92.0 to PERRY 92.0 Circuit 1
line_1904	Line	Line HOLTVILLE 92.0 to ATEN 92.0 Circuit 1
line_1905	Line	Line CLARK 92.0 to DAHLIA 92.0 Circuit 1
line_1906	Line	Line NEW_MECCA 92.0 to NORTHSHR 92.0 Circuit 1
line_1907	Line	Line NEW_MECCA 92.0 to KTP2 92.0 Circuit 1
line_1908	Line	Line AVE52 92.0 to THERMAL 92.0 Circuit 1
line_1909	Line	Line NILAND 161.0 to CVSUB161 161.0 Circuit 1
line_1910	Line	Line NILAND 161.0 to BLYTHE 161.0 Circuit 1
line_1911	Line	Line BRAVO 92.0 to PERRY 92.0 Circuit 1
line_1912	Line	Line BRAVO 92.0 to CLX92 92.0 Circuit 1
line_1913	Line	Line NILTAP92 92.0 to PRITP1 92.0 Circuit 1
line_1914	Line	Line NILAND 92.0 to NILTAP92 92.0 Circuit 1
line_1915	Line	Line OASIS 92.0 to RTP6OASS 92.0 Circuit 1
line_1916	Line	Line OASIS 92.0 to KTP2 92.0 Circuit 1
line_1917	Line	Line PERRY 92.0 to PRUETT 92.0 Circuit 1
line_1918	Line	Line DESRTPWR 92.0 to UNIT5 92.0 Circuit 1
line_1919	Line	Line ROCKWOOD 92.0 to WSTBIOTP 92.0 Circuit 2
line_1920	Line	Line ROCKWOOD 92.0 to BRAW92 92.0 Circuit 1
line_1921	Line	Line DIXPRI1 92.0 to CENTRAL 92.0 Circuit 1
line_1922	Line	Line RTAP2 92.0 to RTP3ANZA 92.0 Circuit 1
line_1923	Line	Line RTAP2 92.0 to SANFELIP 92.0 Circuit 1
line_1924	Line	Line RTAP2 92.0 to RTP1 92.0 Circuit 1
line_1925	Line	Line RTP3ANZA 92.0 to RTP4SLTN 92.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_1926	Line	Line RTP4SLTN	92.0 to RTP5DSTS 92.0 Circuit 1
line_1927	Line	Line RTP5DSTS	92.0 to RTP6OASS 92.0 Circuit 1
line_1928	Line	Line THERMAL	92.0 to KTP2 92.0 Circuit 1
line_1929	Line	Line CLX92	92.0 to MALL 92.0 Circuit 1
line_1930	Line	Line ELSTEAMP	92.0 to MALL 92.0 Circuit 1
line_1931	Line	Line CALPTTAP	92.0 to CALIPAT 92.0 Circuit 1
line_1932	Line	Line CALPTTAP	92.0 to PRITP2 92.0 Circuit 1
line_1933	Line	Line HL1TAP	92.0 to HIGHLINE 92.0 Circuit 1
line_1934	Line	Line JJELMORE	92.0 to LEATHERS 92.0 Circuit 1
line_1935	Line	Line JJELMORE	92.0 to DELRAN 92.0 Circuit 1
line_1936	Line	Line EARTHE2	92.0 to REG1EX 92.0 Circuit 1
line_1937	Line	Line EARTHE2	92.0 to VULCAN 92.0 Circuit 1
line_1938	Line	Line HIGHLINE	230.0 to MIDWAY 230.0 Circuit 1
line_1939	Line	Line HIGHLINE	230.0 to MIDWAY 230.0 Circuit 2
line_1940	Line	Line HIGHLINE	92.0 to GEM23 92.0 Circuit 2
line_1941	Line	Line RAMON	230.0 to MIRAGE 230.0 Circuit 1
line_1942	Line	Line CALIPAT	92.0 to CALTP2 92.0 Circuit 1
line_1943	Line	Line MIDWAY	92.0 to MINPLNT 92.0 Circuit 1
line_1944	Line	Line MIDWAY	92.0 to VULCAN 92.0 Circuit 1
line_1945	Line	Line MINPLNT	92.0 to UNIT5 92.0 Circuit 1
line_1946	Line	Line WSTBIOTP	92.0 to WESTBIO 92.0 Circuit 1
line_1947	Line	Line AVE58	161.0 to AVE58TP1 161.0 Circuit 1
line_1948	Line	Line AVE58	161.0 to AVE58TP2 161.0 Circuit 1
line_1949	Line	Line AVE58TP2	161.0 to CVSUB161 161.0 Circuit 1
line_1950	Line	Line PRITP1	92.0 to PRISON 92.0 Circuit 1
line_1951	Line	Line PRISON	92.0 to PRITP2 92.0 Circuit 1
line_1952	Line	Line GEM92	92.0 to GEM23 92.0 Circuit 2
line_1953	Line	Line GEM23	92.0 to ORM2 92.0 Circuit 2
line_1954	Line	Line ORM2	92.0 to ORM1 92.0 Circuit 2
line_1955	Line	Line CALTP2	92.0 to BEEFPLNT 92.0 Circuit 1
line_1956	Line	Line DIXPRI1	92.0 to DIXPRI 92.0 Circuit 1
line_1957	Line	Line DIXPRI	92.0 to DIXPRI2 92.0 Circuit 1
line_1958	Line	Line NEW_IMPER	ERIAL 92.0 to PANNO 92.0 Circuit 1
line_1959	Line	Line BRAW92	92.0 to PARKVIEW 92.0 Circuit 1
line_1960	Line	Line BRAW92	92.0 to PANNO 92.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1961	Line	Line BRAW92 92.0 to BEEFPLNT 92.0 Circuit 1
line_1962	Line	Line KNOB 161.0 to PILOTKNB 161.0 Circuit 1
line_1963	Line	Line ELCENTSW 161.0 to NILAND 161.0 Circuit 1
line_1964	Line	Line ELCENTSW 161.0 to AVE58TP1 161.0 Circuit 1
line_1965	Line	Line AVE48 92.0 to AVE58 92.0 Circuit 1
line_1966	Line	Line CWTAP2 92.0 to SHIELDS 92.0 Circuit 1
line_1967	Line	Line ELSTEAMP 92.0 to PRUETTAP 92.0 Circuit 1
line_1968	Line	Line PRUETT 92.0 to PRUETTAP 92.0 Circuit 1
line_1969	Line	Line NILAND 92.0 to MW1TAP 92.0 Circuit 1
line_1970	Line	Line MW1TAP 92.0 to MIDWAY 92.0 Circuit 1
line_1971	Line	Line LEATHERS 92.0 to MW1TAP 92.0 Circuit 1
line_1972	Line	Line NILAND 92.0 to LIB XX 92.0 Circuit 1
line_1973	Line	Line BOMBAY 92.0 to LIB XX 92.0 Circuit 1
line_1974	Line	Line USGYPS 92.0 to DIXIELAN 92.0 Circuit 1
line_1975	Line	Line AVE42 92.0 to SHAHILLS 92.0 Circuit 1
line_1976	Line	Line SHAHILLS 92.0 to CMTAP2 92.0 Circuit 1
line_1977	Line	Line NBSWYRD 92.0 to NTHBRTP2 92.0 Circuit 1
line_1978	Line	Line NBSWYRD 92.0 to NTHBRTP3 92.0 Circuit 1
line_1979	Line	Line PARKVIEW 92.0 to NBTAP 92.0 Circuit 1
line_1980	Line	Line CALIPAT 92.0 to NBTAP 92.0 Circuit 1
line_1981	Line	Line HOLTVILLE 92.0 to HOLT-TAP 92.0 Circuit 1
line_1982	Line	Line HOLT-TAP 92.0 to DROP4 92.0 Circuit 1
line_1983	Line	Line HOLT-TAP 92.0 to HIGHLINE 92.0 Circuit 1
line_1984	Line	Line AMRAD 345.0 to ARTESIA 345.0 Circuit 1
line_1985	Line	Line B-A 345.0 to GUADLUPE 345.0 Circuit 1
line_1986	Line	Line B-A 345.0 to NORTON 345.0 Circuit 1
line_1987	Line	Line B-A 345.0 to RIOPUERC 345.0 Circuit 1
line_1988	Line	Line CALIENTE 345.0 to AMRAD 345.0 Circuit 1
line_1989	Line	Line CALIENTE 345.0 to PICANTE 345.0 Circuit 1
line_1990	Line	Line FOURCORN 345.0 to RIOPUERC 345.0 Circuit 1
line_1991	Line	Line FOURCORN 345.0 to SAN_JUAN 345.0 Circuit 1
line_1992	Line	Line GUADLUPE 345.0 to TAIBANMS 345.0 Circuit 1
line_1993	Line	Line HIDALGO 345.0 to GREENLEE 345.0 Circuit 1
line_1994	Line	Line LUNA 345.0 to AFTON 345.0 Circuit 1
line_1995	Line	Line LUNA 345.0 to DIABLO 345.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_1996	Line	Line LUNA 345.0 to HIDALGO 345.0 Circuit 1
line_1997	Line	Line LUNA 345.0 to LEF 345.0 Circuit 1
line_1998	Line	Line MACHO_SPRNGS 345.0 to LUNA 345.0 Circuit 1
line_1999	Line	Line MACHO_SPRNGS 345.0 to SPRINGR 345.0 Circuit 1
line_2000	Line	Line NEWMAN 345.0 to AFTON 345.0 Circuit 1
line_2001	Line	Line NEWMAN 345.0 to ARROYO 345.0 Circuit 1
line_2002	Line	Line OJO 345.0 to TAOS 345.0 Circuit 1
line_2003	Line	Line PICANTE 345.0 to NEWMAN 345.0 Circuit 1
line_2004	Line	Line RIOPUERC 345.0 to B-A 345.0 Circuit 2
line_2005	Line	Line RIOPUERC 345.0 to WESTMESA 345.0 Circuit 1
line_2006	Line	Line RIOPUERC 345.0 to WESTMESA 345.0 Circuit 2
line_2007	Line	Line SAN_JUAN 345.0 to B-A 345.0 Circuit 1
line_2008	Line	Line SAN_JUAN 345.0 to MCKINLEY 345.0 Circuit 1
line_2009	Line	Line SAN_JUAN 345.0 to MCKINLEY 345.0 Circuit 2
line_2010	Line	Line SAN_JUAN 345.0 to OJO 345.0 Circuit 1
line_2011	Line	Line SAN_JUAN 345.0 to RIOPUERC 345.0 Circuit 1
line_2012	Line	Line SHIPROCK 345.0 to SAN_JUAN 345.0 Circuit 1
line_2013	Line	Line TAIBANMS 345.0 to BLACKWTR 345.0 Circuit 1
line_2014	Line	Line WESTMESA 345.0 to ARROYO 345.0 Circuit 1
line_2015	Line	Line WESTMESA 345.0 to ARR___PS 345.0 Circuit 1
line_2016	Line	Line WESTMESA 345.0 to SANDIA 345.0 Circuit 1
line_2017	Line	Tran ARR__PS 345.00 to ARROYO 345.00 Circuit 1
line_2018	Line	Line 8311 230.0 to 8699 230.0 Circuit 1
line_2019	Line	Line 8311 230.0 to 8699 230.0 Circuit 2
line_2020	Line	Line CVSUB230 230.0 to MIRAGE 230.0 Circuit 1
line_2021	Line	Line CVSUB230 230.0 to RAMON 230.0 Circuit 1
line_2022	Line	Line IMPRLVLY 230.0 to ELCENTSW 230.0 Circuit 1
line_2023	Line	Line RAMON 230.0 to MIRAGE 230.0 Circuit 1
line_2024	Line	Line BLYTHE 161.0 to NILAND 161.0 Circuit 1
line_2025	Line	Line CVSUB161 161.0 to NILAND 161.0 Circuit 1
line_2026	Line	Line ELCENTSW 161.0 to NILAND 161.0 Circuit 1
line_2027	Line	Line ELCENTSW 161.0 to PILOTKNB 161.0 Circuit 1
line_2028	Line	Line KNOB 161.0 to PILOTKNB 161.0 Circuit 1
line_2029	Line	Line PILOTKNB 161.0 to YUCCA161 161.0 Circuit 1
line_2030	Line	Line COACHELLASW 92.0 to CVSUB92 92.0 Circuit 1

2014 Single Contingency List (Category B)		
Contingency Number	Type	Contingency Name
line_2031	Line	Line COACHELLASW 92.0 to CVSUB92 92.0 Circuit 2
line_2032	Line	Tran ELCENTSW 230.00 to ELSTEAMP 92.00 Circuit 1
line_2033	Line	Tran RAMON 230.00 to RAMON92 92.00 Circuit 1
line_2034	Line	Tran ELCENTSW 161.00 to ELCENTSW 230.00 Circuit 1
line_2035	Line	Tran ELCENTSW 161.00 to ELSTEAMP 92.00 Circuit 1
line_2036	Line	Tran PILOTKNB 161.00 to PILOTKNB 92.00 Circuit 1
line_2037	Line	Tran CVSUB92 92.00 to CVSUB230 230.00 Circuit 1
line_2038	Line	Tran CVSUB92 92.00 to CVSUB161 161.00 Circuit 1
line_2039	Line	Tran CVSUB92 92.00 to CVSUB230 230.00 Circuit 2
line_2040	Line	Tran NILAND 92.00 to NILAND 161.00 Circuit 1
line_2041	Line	Line HASSYAMP 500.0 to HDWSH 500.0 Circuit 1
line_2042	Line	Line HDWSH 500.0 to N.GILA 500.0 Circuit 1
line_2043	Line	Line N.GILA 500.0 to IMPRLVLY 500.0 Circuit 1
line_2044	Line	Line Q043B1 500.0 to HDWSH 500.0 Circuit 1
line_2045	Line	Line Q043B2 500.0 to HDWSH 500.0 Circuit 1
line_2046	Line	Line IMPRLVLY 230.0 to ELCENTSW 230.0 Circuit 1
line_2047	Line	Line IMPRLVLY 230.0 to ROA-230 230.0 Circuit 1
line_2048	Line	Line TDM 230 230.0 to IMPRLVLY 230.0 Circuit 1
line_2049	Line	Line TDM 230 230.0 to IMPRLVLY 230.0 Circuit 2
line_2050	Line	Tran SUNCREST 500.00 to SNCRSMP1 500.00 Circuit 1
line_2051	Line	Tran SUNCREST 500.00 to SNCRSMP2 500.00 Circuit 1
line_2052	Line	Tran IMPRLVLY 230.00 to IMPRLVLY 500.00 Circuit 1
line_2053	Line	Tran IMPRLVLY 230.00 to IMPRLVLY 500.00 Circuit 2
line_2054	Line	Tran IMPRLVLY 230.00 to IMPRLVLY 500.00 Circuit 3
line_2055	Line	Tran SUNCREST 230.00 to SNCRSMP1 500.00 Circuit 1
line_2056	Line	Tran SUNCREST 230.00 to SNCRSMP2 500.00 Circuit 1
line_2057	Line	Line DEVERS 500.0 to VALLEYSC 500.0 Circuit 1
line_2058	Line	Line DEVRSVC1 500.0 to DEVERS 500.0 Circuit 1
line_2059	Line	Line ELDORDO 500.0 to LUGO 500.0 Circuit 1
line_2060	Line	Line ELDORDO 500.0 to MCCULLGH 500.0 Circuit 1
line_2061	Line	Line MOENKOPI 500.0 to ELDORDO 500.0 Circuit 1
line_2062	Line	Line CVSUB230 230.0 to MIRAGE 230.0 Circuit 1
line_2063	Line	Line DEVERS 230.0 to MIRAGE 230.0 Circuit 1
line_2064	Line	Line DEVERS 230.0 to MIRAGE 230.0 Circuit 2
line_2065	Line	Line MEAD S 230.0 to ELDORDO 230.0 Circuit 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
line_2066	Line	Line MEAD S	230.0 to ELDORDO 230.0 Circuit 2
line_2067	Line	Line RAMON	230.0 to MIRAGE 230.0 Circuit 1
line_2068	Line	Line BLYTHE	161.0 to BLYTHESC 161.0 Circuit 1
line_2069	Line	Line ELDORDO2	230.0 to IVANPAH 230.0 Circuit 1
line_2070	Line	Line ELDORDO2	230.0 to IVANPAH 230.0 Circuit 2
tran_2071	Transformer	Tran GALLEGOS	230.00 to GALLEGOS 115.00 Circuit 1
tran_2072	Transformer	Tran SAN_JUAN	230.00 to HOGBAK 115.00 Circuit 1
tran_2073	Transformer	Tran CHOLLA	500.00 to CHOLLA 345.00 Circuit 1CHOLLA3T
tran_2074	Transformer	Tran CHOLLA	500.00 to CHOLLA 345.00 Circuit 2CHOLLA6T
tran_2075	Transformer	Tran FOURCORN	500.00 to FOURCORN 345.00 Circuit 14C 1AA T
tran_2076	Transformer	Tran SAGUARO	500.00 to SAG.EAST 115.00 Circuit 1SAGUAR7T
tran_2077	Transformer	Tran SAGUARO	500.00 to SAG.WEST 115.00 Circuit 1SAGUAR4T
tran_2078	Transformer	Tran WESTWING	500.00 to WESTWNGW 230.00 Circuit 2WESTWG 4
tran_2079	Transformer	Tran WESTWING	500.00 to WESTWNGW 230.00 Circuit 3WESTWG10
tran_2080	Transformer	Tran WESTWING	500.00 to WESTWNGE 230.00 Circuit 1WESTWG 1
tran_2081	Transformer	Tran WESTWING	500.00 to WESTWING 345.00 Circuit 1
tran_2082	Transformer	Tran YAVAPAI	500.00 to YAVAPAI 230.00 Circuit 1YAVAP 1T
tran_2083	Transformer	Tran YAVAPAI	500.00 to YAVAPAI 230.00 Circuit 2YAVAP 3T
tran_2084	Transformer	Tran GILARIVR	500.00 to GILARIVR 230.00 Circuit 1
tran_2085	Transformer	Tran MORGAN	500.00 to RACEWAY 230.00 Circuit 1MOR1
tran_2086	Transformer	Tran PNPKAPS	500.00 to PPAPS W 230.00 Circuit 1PP W
tran_2087	Transformer	Tran PNPKAPS	500.00 to PPAPS E 230.00 Circuit 1PP E
tran_2088	Transformer	Tran PNPKAPS	500.00 to PPAPS N 230.00 Circuit 1PP N
tran_2089	Transformer	Tran CHOLLA	345.00 to CHOLLA 230.00 Circuit 1CHOLLA7T
tran_2090	Transformer	Tran FOURCORN	345.00 to FOURCORN 230.00 Circuit 1FOURCN4T
tran_2091	Transformer	Tran FOURCORN	345.00 to FOURCORN 230.00 Circuit 2FOURCN8T
tran_2092	Transformer	Tran PNPKAPS	345.00 to PPAPS C 230.00 Circuit 1PNPK 7T
tran_2093	Transformer	Tran PNPKAPS	345.00 to PPAPS E 230.00 Circuit 3PNPK T14
tran_2094	Transformer	Tran PNPKAPS	345.00 to PPAPS N 230.00 Circuit 2PNPK T4
tran_2095	Transformer	Tran FOURCORN	230.00 to FCORNERS 69.00 Circuit 1FOURCN2T
tran_2096	Transformer	Tran PRESCOTT	230.00 to PRESCOTT 115.00 Circuit 1PRESCT1T
tran_2097	Transformer	Tran PRESCOTT	230.00 to PRESCOTT 115.00 Circuit 2PRESCT2T
tran_2098	Transformer	Tran RNDVLYAZ	230.00 to ROUNDVLY 69.00 Circuit 1
tran_2099	Transformer	Tran SAGUARO	230.00 to SAG.EAST 115.00 Circuit 1SAG 10T
tran_2100	Transformer	Tran SAGUARO	230.00 to SAG.WEST 115.00 Circuit 1SAG 1T

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
tran_2101	Transformer	Tran CEDARMT3	138.00 to CEDARMT 500.00 Circuit 1
tran_2102	Transformer	Tran CORONADO	500.00 to CORONADO 345.00 Circuit 1
tran_2103	Transformer	Tran CORONADO	500.00 to CORONADO 345.00 Circuit 2
tran_2104	Transformer	Tran KYRENE	500.00 to KYR-WEST 230.00 Circuit 6KYRENE6
tran_2105	Transformer	Tran KYRENE	500.00 to KYR-EAST 230.00 Circuit 7KYRENE7
tran_2106	Transformer	Tran KYRENE	500.00 to KYR-EAST 230.00 Circuit 8KYRENE8
tran_2107	Transformer	Tran PERKINS	500.00 to PERK PS1 500.00 Circuit 1
tran_2108	Transformer	Tran PERKINS	500.00 to PERK PS2 500.00 Circuit 1
tran_2109	Transformer	Tran SILVERKG	500.00 to SILVERKG 230.00 Circuit 1SILVERKG
tran_2110	Transformer	Tran BROWNING	500.00 to BROWNING 230.00 Circuit 1ABROWNIN1
tran_2111	Transformer	Tran BROWNING	500.00 to BROWNING 230.00 Circuit 1BBROWNIN2
tran_2112	Transformer	Tran RUDD 500	500.00 to RUDD 230.00 Circuit 1ARUDD1
tran_2113	Transformer	Tran RUDD 500	500.00 to RUDD 230.00 Circuit 1BRUDD2
tran_2114	Transformer	Tran RUDD 500	500.00 to RUDD 230.00 Circuit 3ARUDD3
tran_2115	Transformer	Tran RUDD 500	500.00 to RUDD 230.00 Circuit 3B
tran_2116	Transformer	Tran PINAL_W	500.00 to PINALWES 345.00 Circuit 1
tran_2117	Transformer	Tran DUKE 500	500.00 to TESTTRAK 230.00 Circuit 1
tran_2118	Transformer	Tran PINAL_C 500	500.00 to PINAL_C 230.00 Circuit 1
tran_2119	Transformer	Tran PINAL_C	500.00 to PINAL_C 230.00 Circuit 2
tran_2120	Transformer	Tran MESQUIT2	500.00 to MESQUITE 230.00 Circuit 1
tran_2121	Transformer	Tran MESQUITE	500.00 to MESQUITE 230.00 Circuit 1
tran_2122	Transformer	Tran GOLDFELD	230.00 to GOLDFELD 115.00 Circuit 1
tran_2123	Transformer	Tran GOLDFELD	230.00 to GOLDFELD 115.00 Circuit 2
tran_2124	Transformer	Tran SILVERKG	230.00 to SILVERK1 115.00 Circuit 1
tran_2125	Transformer	Tran SILVERKG	230.00 to SILVERK2 115.00 Circuit 1
tran_2126	Transformer	Tran WARD RS	69.00 to WARD 230.00 Circuit 1
tran_2127	Transformer	Tran WARD RS	69.00 to WARD 230.00 Circuit 2
tran_2128	Transformer	Tran AF-NORTH	69.00 to AGUAFRIA 230.00 Circuit 3
tran_2129	Transformer	Tran AF-NORTH	69.00 to AGUAFRIA 230.00 Circuit 4
tran_2130	Transformer	Tran KYRENEGT	69.00 to KYR-EAST 230.00 Circuit 2
tran_2131	Transformer	Tran KYRENEGT	69.00 to KYR-EAST 230.00 Circuit 3
tran_2132	Transformer	Tran KYRENEGT	69.00 to KYR-EAST 230.00 Circuit 4
tran_2133	Transformer	Tran SANTAN	69.00 to SANTAN 230.00 Circuit 3
tran_2134	Transformer	Tran SANTAN	69.00 to SANTAN 230.00 Circuit 4
tran_2135	Transformer	Tran SANTAN	69.00 to SANTAN 230.00 Circuit 5

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
tran_2136	Transformer	Tran ALEXANDR	69.00 to ALEXANDR 230.00 Circuit 1
tran_2137	Transformer	Tran ALEXANDR	69.00 to ALEXANDR 230.00 Circuit 2
tran_2138	Transformer	Tran ANDERSRS	69.00 to ANDERSON 230.00 Circuit 1
tran_2139	Transformer	Tran ANDERSRS	69.00 to ANDERSON 230.00 Circuit 2
tran_2140	Transformer	Tran ANDERSRS	69.00 to ANDERSON 230.00 Circuit 3
tran_2141	Transformer	Tran ANDERSRS	69.00 to ANDERSON 230.00 Circuit 4
tran_2142	Transformer	Tran SCHRADER	69.00 to SCHRADER 230.00 Circuit 1
tran_2143	Transformer	Tran SCHRADER	69.00 to SCHRADER 230.00 Circuit 4
tran_2144	Transformer	Tran SCHRADER	69.00 to SCHRADER 230.00 Circuit 3
tran_2145	Transformer	Tran BRANDOW	69.00 to BRANDOW 230.00 Circuit 1
tran_2146	Transformer	Tran BRANDOW	69.00 to BRANDOW 230.00 Circuit 2
tran_2147	Transformer	Tran BRANDOW	69.00 to BRANDOW 230.00 Circuit 3
tran_2148	Transformer	Tran CORBELRS	69.00 to CORBELL 230.00 Circuit 2
tran_2149	Transformer	Tran CORBELRS	69.00 to CORBELL 230.00 Circuit 3
tran_2150	Transformer	Tran CORBELRS	69.00 to CORBELL 230.00 Circuit 4
tran_2151	Transformer	Tran ORME RS	69.00 to ORME 230.00 Circuit 1
tran_2152	Transformer	Tran ORME RS	69.00 to ORME 230.00 Circuit 2
tran_2153	Transformer	Tran ORME RS	69.00 to ORME 230.00 Circuit 3
tran_2154	Transformer	Tran ORME RS	69.00 to ORME 230.00 Circuit 4
tran_2155	Transformer	Tran PAPAGOBT	69.00 to PAPAGOBT 230.00 Circuit 1
tran_2156	Transformer	Tran PAPAGOBT	69.00 to PAPAGOBT 230.00 Circuit 2
tran_2157	Transformer	Tran PAPAGOBT	69.00 to PAPAGOBT 230.00 Circuit 3
tran_2158	Transformer	Tran PAPAGOBT	69.00 to PAPAGOBT 230.00 Circuit 4
tran_2159	Transformer	Tran ROGERS	69.00 to ROGERS 230.00 Circuit 2
tran_2160	Transformer	Tran ROGERS	69.00 to ROGERS 230.00 Circuit 4
tran_2161	Transformer	Tran THUNDRST	69.00 to THUNDRST 230.00 Circuit 1
tran_2162	Transformer	Tran THUNDRST	69.00 to THUNDRST 230.00 Circuit 2
tran_2163	Transformer	Tran THUNDRST	69.00 to THUNDRST 230.00 Circuit 3
tran_2164	Transformer	Tran THUNDRST	69.00 to THUNDRST 230.00 Circuit 4
tran_2165	Transformer	Tran WHITETNK	69.00 to WHITETNK 230.00 Circuit 1
tran_2166	Transformer	Tran WHITETNK	69.00 to WHITETNK 230.00 Circuit 3
tran_2167	Transformer	Tran KNOX 6	69.00 to KNOX 230.00 Circuit 2
tran_2168	Transformer	Tran BROWNING	69.00 to BROWNING 230.00 Circuit 4
tran_2169	Transformer	Tran DINOSAUR	69.00 to DINOSAUR 230.00 Circuit 1
tran_2170	Transformer	Tran ABEL 69	9.00 to ABEL 230.00 Circuit 4

2014 Single Contingency List (Category B)				
Contingency Number	Type	Contingency Name		
tran_2206	Transformer	Tran PANTANO	230.00 to PANTANO	115.00 Circuit 1
tran_2207	Transformer	Tran RIVIERA	69.00 to RIVIERA 230.00	,00 Circuit 1
tran_2208	Transformer	Tran RIVIERA	69.00 to RIVIERA 230.0	00 Circuit 2
tran_2209	Transformer	Tran DOSCONDO	69.00 to DOSCONDO	230.00 Circuit 1
tran_2210	Transformer	Tran DOSCONDO	69.00 to DOSCONDO	230.00 Circuit 2
tran_2211	Transformer	Tran KARTCHNR	69.00 to KARTCHNR	115.00 Circuit 1
tran_2212	Transformer	Tran HACKBERY	69.00 to HACKBERY	230.00 Circuit 1
tran_2213	Transformer	Tran HACKBERY	69.00 to HACKBERY	230.00 Circuit 2
tran_2214	Transformer	Tran RED TAIL	69.00 to RED TAIL 230	0.00 Circuit 1
tran_2215	Transformer	Tran SAN RAF	69.00 to SAN RAF 230.	.00 Circuit 1
tran_2216	Transformer	Tran BICKNELL	69.00 to BICKNELL 11	15.00 Circuit 1
tran_2217	Transformer	Tran TOPOCK	69.00 to TOPOCK 230.	.00 Circuit 1
tran_2218	Transformer	Tran COL-SCIP	115.00 to COL-SCIP 69.00	.00 Circuit 1
tran_2219	Transformer	Tran COL-SCIP	115.00 to COL-SCIP 69.	.00 Circuit 2
tran_2220	Transformer	Tran MEAD S	230.00 to MEAD B 69.0	.00 Circuit 1
tran_2221	Transformer	Tran MEAD S	230.00 to MEAD A 69.0	.00 Circuit 1
tran_2222	Transformer	Tran MEAD S	230.00 to MEAD 287.00	87.00 Circuit 1
tran_2223	Transformer	Tran MEAD	345.00 to MEAD N 230.00	.00 Circuit 1MEAD
tran_2224	Transformer	Tran MEAD	500.00 to MEAD N 230.00	00 Circuit 1
tran_2225	Transformer	Tran MEAD 5	500.00 to MEAD N 230.00	00 Circuit 2
tran_2226	Transformer	Tran PARKERAZ	161.00 to PARKERAZ	69.00 Circuit 1
tran_2227	Transformer	Tran PARKER	230.00 to PARKERAZ 161.0	61.00 Circuit 1
tran_2228	Transformer	Tran PARKER	230.00 to PARKERAZ 161.0	61.00 Circuit 2
tran_2229	Transformer	Tran COOLIDGE	230.00 to COOLIDGE	115.00 Circuit 1CO
tran_2230	Transformer	Tran COOLIDGE	230.00 to COOLIDGE	115.00 Circuit 2CO
tran_2231	Transformer	Tran GILA YU	161.00 to GILA 69.00	Circuit 1GILAYU1
tran_2232	Transformer	Tran GILA YU	161.00 to GILA 69.00	Circuit 2GILAYU2
tran_2233	Transformer	Tran LIBERTY	345.00 to LIBTYPS 230.0	. 00 Circuit 1LIBER
tran_2234	Transformer	Tran ORACLE	115.00 to ORACLE 69.00	900 Circuit 1
tran_2235	Transformer	Tran ORACLE	115.00 to ORACLE 69.00	.00 Circuit 2
tran_2236	Transformer	Tran LIBTYPS	230.00 to LIBERTY 230	. 00 Circuit 1
tran_2237	Transformer	Tran TESTTRAK	230.00 to TESTTRAK	69.00 Circuit 1
tran_2238	Transformer	Tran HARCUVAR	230.00 to HARCUVAR	115.00 Circuit 1
tran_2239	Transformer	Tran HEADGATE	161.00 to HEADGATE	69.00 Circuit 1
tran_2240	Transformer	Tran HEADGATE	161.00 to HEADGATE	69.00 Circuit 2

2014 Single Contingency List (Category B)				
Contingency Number	Type	Contingency Name		
tran_2241	Transformer	Tran SPOOKHIL	230.00 to SPOOKHIL	69.00 Circuit 1
tran_2242	Transformer	Tran SPOOKHIL	230.00 to SPOOKHIL	69.00 Circuit 2
tran_2243	Transformer	Tran CASAGRND	D 230.00 to CASAGRND	115.00 Circuit 1
tran_2244	Transformer	Tran LONEBUTT	230.00 to LONGTIN	69.00 Circuit 1
tran_2245	Transformer	Tran PEACOCK	345.00 to PEACOCK	230.00 Circuit 1
tran_2246	Transformer	Tran KOFA 1	161.00 to KOFA 69.00	0 Circuit 1
tran_2247	Transformer	Tran GLEN PS	230.00 to GLENCANY	230.00 Circuit 1
tran_2248	Transformer	Tran GLENCANY	Y 345.00 to GLENCANY	230.00 Circuit 1
tran_2249	Transformer	Tran GLENCANY	Y 345.00 to GLENCANY	230.00 Circuit 2
tran_2250	Transformer	Tran PPK WAPA	345.00 to PPKWAPA	230.00 Circuit 1PPKWAPA1
tran_2251	Transformer	Tran PPK WAPA	345.00 to PPKWAPA	230.00 Circuit 2PPKWAPA2
tran_2252	Transformer	Tran PPK WAPA	345.00 to PPKWAPA	230.00 Circuit 3PPKWAPA3
tran_2253	Transformer	Tran SHIP PS 2	230.00 to SHIPROCK 23	30.00 Circuit 1
tran_2254	Transformer	Tran SHIPROCK	230.00 to SHIPROCK	115.00 Circuit 1SHIPROCK
tran_2255	Transformer	Tran SHIPROCK	345.00 to SHIPROCK	230.00 Circuit 1
tran_2256	Transformer	Tran CASGRAPS	230.00 to CASGRAPS	69.00 Circuit 1CASGRA2T
tran_2257	Transformer	Tran SNTAROSA	A 230.00 to SNTAROSA	69.00 Circuit 1SNTARS7T
tran_2258	Transformer	Tran MILLIGAN	230.00 to MILLIGAN	69.00 Circuit 1MILLGN2T
tran_2259	Transformer	Tran SNMANUEL	L 115.00 to SNMANUEL	100.00 Circuit 1
tran_2260	Transformer	Tran VLYFARMS	S 115.00 to VLYFARMS	69.00 Circuit 1
tran_2261	Transformer	Tran PINAL 1	115.00 to PINAL 69.00	0 Circuit 1
tran_2262	Transformer	Tran MURAL	69.00 to MURAL 115.00	5.00 Circuit 1MURALT3T
tran_2263	Transformer	Tran N.GILA	500.00 to N.GILA 69.00	.00 Circuit 1N.GILA4T
tran_2264	Transformer	Tran N.GILA	500.00 to N.GILA 69.0	. 0 Circuit 2N.GILA3T
tran_2265	Transformer	Tran EAGLEYE	230.00 to EAGLEY E	69.00 Circuit 1EAGLEY3T
tran_2266	Transformer	Tran EAGLEYE	230.00 to EAGLEY W	69.00 Circuit 1EAGLEY4T
tran_2267	Transformer	Tran SGRLF	500.00 to SGRLF 69.00	. 0 Circuit 1SGRLF 2T
tran_2268	Transformer	Tran DUGAS	500.00 to DUGAS 69	9.00 Circuit 1DUGAS 2T
tran_2269	Transformer	Tran CHOLLA	345.00 to CHOLLA2	69.00 Circuit 1
tran_2270	Transformer	Tran PRECHCYN	N 345.00 to PRECHCYN	69.00 Circuit 1PRECHC1T
tran_2271	Transformer	Tran PRECHCYN	N 345.00 to PRECHCYN	69.00 Circuit 2PRECHC6T
tran_2272	Transformer	Tran CHOLLA	230.00 to CHOLLA1	69.00 Circuit 1CHOLLA1T
tran_2273	Transformer	Tran CHOLLA	230.00 to CHOLLA2	69.00 Circuit 1CHOLLA2T
tran_2274	Transformer	Tran COCONINO	230.00 to COCONINO	69.00 Circuit 1COCON12T
tran_2275	Transformer	Tran COCONINO	230.00 to COCONINO	69.00 Circuit 2COCON 4T

2014 Single Contingency List (Category B)				
Contingency Number	Type	Contingency Name		
tran_2276	Transformer	Tran VERDE N	230.00 to VERDE 69.00	.00 Circuit 1VERDE10T
tran_2277	Transformer	Tran YAVAPAI	230.00 to YAVAPAIW	69.00 Circuit 1YAVAP11T
tran_2278	Transformer	Tran VERDE S	230.00 to VERDE 69.00	00 Circuit 1VERDE 3T
tran_2279	Transformer	Tran WILOWLKE	230.00 to WILOWLKE	69.00 Circuit 1WLOLK 6T
tran_2280	Transformer	Tran WILOWLKW	W 230.00 to WILOWLKW	69.00 Circuit 1WLOLK10T
tran_2281	Transformer	Tran CORONADO	500.00 to \$CORONAD	69.00 Circuit 1
tran_2282	Transformer	Tran BUCKEYE	230.00 to BUCKEYE 6	69.00 Circuit 1BUCKEY6T
tran_2283	Transformer	Tran BUCKEYE	230.00 to BUCKEYE 69.0	69.00 Circuit 2BUCKEY2T
tran_2284	Transformer	Tran CACTUS	230.00 to CACTUS E 69.	9.00 Circuit 1CACTUS6T
tran_2285	Transformer	Tran CACTUS	230.00 to CACTUS C 69.	9.00 Circuit 1CACTS10T
tran_2286	Transformer	Tran CACTUS	230.00 to CACTUS W 69	9.00 Circuit 1CACTS14T
tran_2287	Transformer	Tran CTRYCLUB	230.00 to CTRYCLBN	69.00 Circuit 1CTRYCL6T
tran_2288	Transformer	Tran CTRYCLUB	230.00 to CTRYCLBS	69.00 Circuit 1
tran_2289	Transformer	Tran DEERVALY	230.00 to DEERVALE	69.00 Circuit 1DEERV14T
tran_2290	Transformer	Tran DEERVALY	230.00 to DEERVALW	69.00 Circuit 1DEERVL6T
tran_2291	Transformer	Tran DEERVALY	230.00 to DEERVALC	69.00 Circuit 2DEERV10T
tran_2292	Transformer	Tran EL SOL 230.	230.00 to EL SOLMN 69.00	00 Circuit 1EL SOL4T
tran_2293	Transformer	Tran EL SOL 230	230.00 to EL SOLMS 69.00	.00 Circuit 1ELSOL12T
tran_2294	Transformer	Tran LINCSTRT	230.00 to LINCOLNE 69	69.00 Circuit 1LINCS10T
tran_2295	Transformer	Tran LONEPEAK	230.00 to LONEPK E 69	69.00 Circuit 1LONEPK7T
tran_2296	Transformer	Tran LONEPEAK	230.00 to LONEPK W	69.00 Circuit 1LONEPK1T
tran_2297	Transformer	Tran MEADOWBK	K 230.00 to MEADOWBN	V 69.00 Circuit 1MEADOW9T
tran_2298	Transformer	Tran OCOTILLO	230.00 to OCOTIL N 69	9.00 Circuit 10COTIL1T
tran_2299	Transformer	Tran OCOTILLO	230.00 to OCOTIL S 69	9.00 Circuit 1
tran_2300	Transformer	Tran REACH 230	230.00 to REACH 69.00	0 Circuit 1REACH 4T
tran_2301	Transformer	Tran REACH 230	230.00 to REACH 69.00	00 Circuit 2REACH 2T
tran_2302	Transformer	Tran PPAPS W	230.00 to PINNPK W 69.	.00 Circuit 1PNPK 3T
tran_2303	Transformer	Tran SUNYSLOP	230.00 to SUNYSLPE 69.	69.00 Circuit 1SUNYSL3T
tran_2304	Transformer	Tran SUNYSLOP	230.00 to SUNYSLPW	69.00 Circuit 1SUNYSL1T
tran_2305	Transformer	Tran SURPRISE	230.00 to SURPRISN 69	9.00 Circuit 1SURPR12T
tran_2306	Transformer	Tran SURPRISE	230.00 to SURPRISS 69.	9.00 Circuit 1SURPR 4T
tran_2307	Transformer	Tran SURPRISE	230.00 to SURPRISC 69,	9.00 Circuit 1SURPR 8T
tran_2308	Transformer	Tran WHTNKAPS	230.00 to WHTNKAPS	69.00 Circuit 2WHTNK 8T
tran_2309	Transformer	Tran WHTNKAPS	230.00 to WHTNKAPN	69.00 Circuit 1WHTNK 5T
tran_2310	Transformer	Tran WPHXAPSS	230.00 to WPHXAPSN	69.00 Circuit 1WPHX 10T

2014 Single Contingency List (Category B)				
Contingency Number	Type	Contingency Name		
tran_2311	Transformer	Tran WPHXAPSS	230.00 to WPHXAPSS	69.00 Circuit 1WPHX T16
tran_2312	Transformer	Tran WPHXAPSS	230.00 to WPHXAPSC	69.00 Circuit 1WPHX 14T
tran_2313	Transformer	Tran GILABEND	230.00 to GILABEND	69.00 Circuit 1GILAB12T
tran_2314	Transformer	Tran GILABEND	230.00 to GILABEND	69.00 Circuit 2GILABD8T
tran_2315	Transformer	Tran GAVILNPK	230.00 to GAVILNPK	69.00 Circuit 1GAVNPK1T
tran_2316	Transformer	Tran RACEWAY	230.00 to RACEWAY	69.00 Circuit 1RACEWY8T
tran_2317	Transformer	Tran PLMVLY	230.00 to PLMVLY	69.00 Circuit 1PLMVLY T
tran_2318	Transformer	Tran WESTWNGE	230.00 to WESTWING	G 69.00 Circuit 1WESTW11T
tran_2319	Transformer	Tran WESTWNGE	230.00 to WESTWING	G 69.00 Circuit 2WESTW14T
tran_2320	Transformer	Tran PPAPS C 230.0	230.00 to PINNPK E 69	69.00 Circuit 1PNPK 6T
tran_2321	Transformer	Tran AGUAFRIA	230.00 to AFRAAPSN	69.00 Circuit 1AGUAFR5T
tran_2322	Transformer	Tran ALEXANDR	230.00 to ALEXNDR	69.00 Circuit 1ALEXND1T
tran_2323	Transformer	Tran PPAPS E 23	230.00 to PINPKEST 69	69.00 Circuit 1PNPK 17T
tran_2324	Transformer	Tran YOUNGSCY	345.00 to YOUNGSCY	Y 69.00 Circuit 2YOUNGS2T
tran_2325	Transformer	Tran AVSOLAR	115.00 to AVSOLAR	500.00 Circuit 1
tran_2326	Transformer	Tran BLACK PK	161.00 to BLACK PK	69.00 Circuit 1BLACKPKT
tran_2327	Transformer	Tran YUCCA161	161.00 to YUCCA W	69.00 Circuit 2YUCCA 2T
tran_2328	Transformer	Tran YUCCA161	161.00 to YUCCA W	69.00 Circuit 1YUCCA 1T
tran_2329	Transformer	Tran PPAPS E 230.0	230.00 to PINPKEST 69	69.00 Circuit 2PNPK 19T
tran_2330	Transformer	Tran CVSUB92	92.00 to CVSUB230 2	230.00 Circuit 1
tran_2331	Transformer	Tran CVSUB92	92.00 to CVSUB230 2	230.00 Circuit 2
tran_2332	Transformer	Tran CVSUB92	92.00 to CVSUB161 1	161.00 Circuit 1
tran_2333	Transformer	Tran AVE58 92,	92.00 to AVE58 161.00	.00 Circuit 1
tran_2334	Transformer	Tran ELCENTSW	161.00 to ELSTEAMP	92.00 Circuit 1
tran_2335	Transformer	Tran ELCENTSW	161.00 to ELCENTSW	230.00 Circuit 1
tran_2336	Transformer	Tran NILAND 161	161.00 to NILAND 92,	92.00 Circuit 1
tran_2337	Transformer	Tran PILOTKNB	161.00 to PILOTKNB	92.00 Circuit 1PILOTKN2
tran_2338	Transformer	Tran RAMON92	92.00 to RAMON 2	230.00 Circuit 1
tran_2339	Transformer	Tran HIGHLINE	230.00 to HIGHLINE	92.00 Circuit 1
tran_2340	Transformer	Tran MIDWAY	230.00 to MIDWAY	92.00 Circuit 1
tran_2341	Transformer	Tran MIDWAY	230.00 to MIDWAY	92.00 Circuit 2
tran_2342	Transformer	Tran ELCENTSW	230.00 to ELSTEAMP	92.00 Circuit 1
tran_2343	Transformer	Tran CVSUB92	92.00 to CVSUB230 230	230.00 Circuit 3
tran_2344	Transformer	Tran AVE58 92.00	92.00 to AVE58 161.00	. 00 Circuit 2
tran_2345	Transformer	Tran YUCCA161	161.00 to YUCCA W	69.00 Circuit 2YUCCA 2T

2014 Single Contingency List (Category B)				
Contingency Number	Type	Contingency Name		
tran_2346	Transformer	Tran YUCCA161	161.00 to YUCCA W	69.00 Circuit 1YUCCA 1T
tran_2347	Transformer	Tran ELDORDO2	230.0 to ELDORDO	500.0 Circuit 1
tran_2348	Transformer	Tran ELDORDO2	230.0 to ELDORDO	500.0 Circuit 2
tran_2349	Transformer	Tran DEVERS	500.00 to DEVERS	230.00 Circuit 1DEVERS T
tran_2350	Transformer	Tran DEVERS	500.00 to DEVERS	230.00 Circuit 2DEVERS2T
tran_2351	Transformer	Tran ELDORDO	500.00 to ELDORDO	230.00 Circuit 1ELDOR 1T
tran_2352	Transformer	Tran ELDORDO	500.00 to ELDORDO	230.00 Circuit 2ELDOR 2T
tran_2353	Transformer	Tran DEVERS	115.00 to DEVERS	230.00 Circuit 1
tran_2354	Transformer	Tran DEVERS	115.00 to DEVERS	230.00 Circuit 3
tran_2355	Transformer	Tran DEVERS	115.00 to DEVERS	230.00 Circuit 4
gen_2356	Generator	Gen ABEL G1	13.8 Unit ID 1	
gen_2357	Generator	Gen ABEL G2	13.8 Unit ID 1	
gen_2358	Generator	Gen ABEL G3	13.8 Unit ID 1	
gen_2359	Generator	Gen ABEL G4	13.8 Unit ID 1	
gen_2360	Generator	Gen ABEL G5	13.8 Unit ID 1	
gen_2361	Generator	Gen ABEL G6	13.8 Unit ID 1	
gen_2362	Generator	Gen ABEL G7	13.8 Unit ID 1	
gen_2363	Generator	Gen ABEL G8	13.8 Unit ID 1	
gen_2364	Generator	Gen ABEL G9	13.8 Unit ID 1	
gen_2365	Generator	Gen ABITIBI	13.8 Unit ID 1	
gen_2366	Generator	Gen AGUAFR 1	13.8 Unit ID 1	
gen_2367	Generator	Gen AGUAFR 2	13.8 Unit ID 1	
gen_2368	Generator	Gen AGUAFR 3	18.0 Unit ID 1	
gen_2369	Generator	Gen APACHST2	20.0 Unit ID 1	
gen_2370	Generator	Gen APACHST3	20.0 Unit ID 1	
gen_2371	Generator	Gen ARL-CT1	18.0 Unit ID 1	
gen_2372	Generator	Gen ARL-CT2	18.0 Unit ID 1	
gen_2373	Generator	Gen ARL-ST1	18.0 Unit ID 1	
gen_2374	Generator	Gen BOWIE_G1	18.0 Unit ID 1	
gen_2375	Generator	Gen BOWIE_G2	18.0 Unit ID 1	
gen_2376	Generator	Gen BOWIE_G3	18.0 Unit ID 1	
gen_2377	Generator	Gen BOWIE_G4	18.0 Unit ID 1	
gen_2378	Generator	Gen BOWIE_S1	18.0 Unit ID 1	
gen_2379	Generator	Gen BOWIE_S2	18.0 Unit ID 1	
gen_2380	Generator	Gen C643T_G1	0.5 Unit ID C3	

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
gen_2381	Generator	Gen C643T_G2	0.5 Unit ID C3
gen_2382	Generator	Gen C643T_G3	0.5 Unit ID C3
gen_2383	Generator	Gen C643T_G4	0.5 Unit ID C3
gen_2384	Generator	Gen C643T_G5	0.5 Unit ID C3
gen_2385	Generator	Gen C643T_G6	0.5 Unit ID C3
gen_2386	Generator	Gen C643T_G7	0.5 Unit ID C3
gen_2387	Generator	Gen CEDARMT	0.7 Unit ID 1
gen_2388	Generator	Gen CHOLLA	13.8 Unit ID 1
gen_2389	Generator	Gen CHOLLA2	22.0 Unit ID 1
gen_2390	Generator	Gen CHOLLA3	22.0 Unit ID 1
gen_2391	Generator	Gen CHOLLA4	22.0 Unit ID 1
gen_2392	Generator	Gen CORONAD1	22.0 Unit ID 1
gen_2393	Generator	Gen CORONAD2	22.0 Unit ID 1
gen_2394	Generator	Gen BADGER	0.7 Unit ID 1
gen_2395	Generator	Gen CRISMON	69.0 Unit ID 1
gen_2396	Generator	Gen CROSSHYD	69.0 Unit ID 1
gen_2397	Generator	Gen DARBY	12.5 Unit ID 1
gen_2398	Generator	Gen WASTEMGT	12.5 Unit ID 1
gen_2399	Generator	Gen DBG-CT1	18.0 Unit ID 1
gen_2400	Generator	Gen DBG-CT2	18.0 Unit ID 1
gen_2401	Generator	Gen DBG-ST1	18.0 Unit ID 1
gen_2402	Generator	Gen DMPCCT\#1	13.8 Unit ID 1
gen_2403	Generator	Gen DMPCCT\#2	13.8 Unit ID 1
gen_2404	Generator	Gen DMPCCT\#3	13.8 Unit ID 1
gen_2405	Generator	Gen FAIRVW11	12.5 Unit ID 1
gen_2406	Generator	Gen FCNGEN 1	20.0 Unit ID 1
gen_2407	Generator	Gen FCNGEN 2	20.0 Unit ID 1
gen_2408	Generator	Gen FCNGEN 3	20.0 Unit ID 1
gen_2409	Generator	Gen FCNGN4CC	22.0 Unit ID H
gen_2410	Generator	Gen FCNGN4CC	22.0 Unit ID L
gen_2411	Generator	Gen FCNGN5CC	22.0 Unit ID H
gen_2412	Generator	Gen FCNGN5CC	22.0 Unit ID L
gen_2413	Generator	Gen GIL-CT1	18.0 Unit ID 1
gen_2414	Generator	Gen GIL-CT2	18.0 Unit ID 1
gen_2415	Generator	Gen GIL-CT3	18.0 Unit ID 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
gen_2416	Generator	Gen GIL-CT4	18.0 Unit ID 1
gen_2417	Generator	Gen GIL-CT5	18.0 Unit ID 1
gen_2418	Generator	Gen GIL-CT6	18.0 Unit ID 1
gen_2419	Generator	Gen GIL-CT7	18.0 Unit ID 1
gen_2420	Generator	Gen GIL-CT8	18.0 Unit ID 1
gen_2421	Generator	Gen GIL-ST1	18.0 Unit ID 1
gen_2422	Generator	Gen GIL-ST2	18.0 Unit ID 1
gen_2423	Generator	Gen GIL-ST3	18.0 Unit ID 1
gen_2424	Generator	Gen GIL-ST4	18.0 Unit ID 1
gen_2425	Generator	Gen GLENC1-2	13.8 Unit ID 1
gen_2426	Generator	Gen GLENC1-2	13.8 Unit ID 2
gen_2427	Generator	Gen GLENC3-4	13.8 Unit ID 3
gen_2428	Generator	Gen GLENC3-4	13.8 Unit ID 4
gen_2429	Generator	Gen GLENC5-6	13.8 Unit ID 5
gen_2430	Generator	Gen GLENC5-6	13.8 Unit ID 6
gen_2431	Generator	Gen GLENC7-8	13.8 Unit ID 7
gen_2432	Generator	Gen GLENC7-8	13.8 Unit ID 8
gen_2433	Generator	Gen GRIFFTH1	18.0 Unit ID 1
gen_2434	Generator	Gen GRIFFTH2	18.0 Unit ID 2
gen_2435	Generator	Gen GRIFFTH3	18.0 Unit ID 3
gen_2436	Generator	Gen HGC-CT1	16.0 Unit ID 1
gen_2437	Generator	Gen HGC-CT2	16.0 Unit ID 1
gen_2438	Generator	Gen HGC-CT3	16.0 Unit ID 1
gen_2439	Generator	Gen HGC-ST1	13.8 Unit ID 1
gen_2440	Generator	Gen HGC-ST2	13.8 Unit ID 1
gen_2441	Generator	Gen HGC-ST3	13.8 Unit ID 1
gen_2442	Generator	Gen HOOVERA3	16.5 Unit ID 1
gen_2443	Generator	Gen HOOVERA4	16.5 Unit ID 1
gen_2444	Generator	Gen HOOVERA5	16.5 Unit ID 1
gen_2445	Generator	Gen HOOVERA6	16.5 Unit ID 1
gen_2446	Generator	Gen HOOVERA7	16.5 Unit ID 1
gen_2447	Generator	Gen HOVRA1A2	16.5 Unit ID A1
gen_2448	Generator	Gen HOVRA1A2	16.5 Unit ID A2
gen_2449	Generator	Gen HOVRN1N2	16.5 Unit ID N1
gen_2450	Generator	Gen HOVRN1N2	16.5 Unit ID N2

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
gen_2451	Generator	Gen HOVRN3N4	16.5 Unit ID N3
gen_2452	Generator	Gen HOVRN3N4	16.5 Unit ID N4
gen_2453	Generator	Gen HOVRN5N6	16.5 Unit ID N5
gen_2454	Generator	Gen HOVRN5N6	16.5 Unit ID N6
gen_2455	Generator	Gen HOVRN7N8	16.5 Unit ID N7
gen_2456	Generator	Gen HOVRN7N8	16.5 Unit ID N8
gen_2457	Generator	Gen KYREN 7A	18.0 Unit ID 1
gen_2458	Generator	Gen KYREN 7S	13.8 Unit ID 1
gen_2459	Generator	Gen MERIDIAN	2.3 Unit ID 1
gen_2460	Generator	Gen MES-CT1	18.0 Unit ID 1
gen_2461	Generator	Gen MES-CT2	18.0 Unit ID 1
gen_2462	Generator	Gen MES-CT3	18.0 Unit ID 1
gen_2463	Generator	Gen MES-CT4	18.0 Unit ID 1
gen_2464	Generator	Gen MES-ST1	18.0 Unit ID 1
gen_2465	Generator	Gen MES-ST2	18.0 Unit ID 1
gen_2466	Generator	Gen NAVAJO 1	26.0 Unit ID 1
gen_2467	Generator	Gen NAVAJO 2	26.0 Unit ID 1
gen_2468	Generator	Gen NAVAJO 3	26.0 Unit ID 1
gen_2469	Generator	Gen NELP_SVC	138.0 Unit ID SV
gen_2470	Generator	Gen OCOTGT1	13.8 Unit ID 1
gen_2471	Generator	Gen OCOTST1	13.8 Unit ID 1
gen_2472	Generator	Gen OCOTST2	13.8 Unit ID 1
gen_2473	Generator	Gen OLIVE G	69.0 Unit ID 1
gen_2474	Generator	Gen PALOVRD1	24.0 Unit ID 1
gen_2475	Generator	Gen PALOVRD2	24.0 Unit ID 1
gen_2476	Generator	Gen PALOVRD3	24.0 Unit ID 1
gen_2477	Generator	Gen Q044STG1	13.8 Unit ID 1
gen_2478	Generator	Gen Q044STG2	13.8 Unit ID 2
gen_2479	Generator	Gen Q43_GEN1	0.4 Unit ID 1
gen_2480	Generator	Gen Q43_GEN2	0.4 Unit ID 2
gen_2481	Generator	Gen QUAIL G1	69.0 Unit ID 1
gen_2482	Generator	Gen QUAIL G2	69.0 Unit ID 1
gen_2483	Generator	Gen RED-CT1	18.0 Unit ID 1
gen_2484	Generator	Gen RED-CT2	18.0 Unit ID 1
gen_2485	Generator	Gen RED-CT3	18.0 Unit ID 1

2014 Single Conti			
Contingency Number	Type	Contingency Nam	
gen_2486	Generator	Gen RED-CT4	18.0 Unit ID 1
gen_2487	Generator	Gen RED-ST1	18.0 Unit ID 1
gen_2488	Generator	Gen RED-ST2	18.0 Unit ID 1
gen_2489	Generator	Gen SAGUARO1	15.5 Unit ID 1
gen_2490	Generator	Gen SAGUARO2	15.5 Unit ID 1
gen_2491	Generator	Gen SANTAN 1	13.8 Unit ID 1
gen_2492	Generator	Gen SANTAN 2	13.8 Unit ID 1
gen_2493	Generator	Gen SANTAN 3	13.8 Unit ID 2
gen_2494	Generator	Gen SANTAN 4	13.8 Unit ID 1
gen_2495	Generator	Gen SANTN 5A	18.0 Unit ID 1
gen_2496	Generator	Gen SANTN 5B	18.0 Unit ID 1
gen_2497	Generator	Gen SANTN 5S	18.0 Unit ID 1
gen_2498	Generator	Gen SANTN 6A	18.0 Unit ID 1
gen_2499	Generator	Gen SANTN 6S	13.8 Unit ID 1
gen_2500	Generator	Gen SOPOINT1	18.0 Unit ID 1
gen_2501	Generator	Gen SOPOINT2	18.0 Unit ID 2
gen_2502	Generator	Gen SOPOINT3	18.0 Unit ID 3
gen_2503	Generator	Gen SPR GEN1	19.0 Unit ID 1
gen_2504	Generator	Gen SPR GEN2	19.0 Unit ID 1
gen_2505	Generator	Gen SPR GEN3	21.0 Unit ID 1
gen_2506	Generator	Gen SPR GEN4	21.0 Unit ID 1
gen_2507	Generator	Gen SUNDTGE1	13.8 Unit ID 1
gen_2508	Generator	Gen SUNDTGE2	13.8 Unit ID 1
gen_2509	Generator	Gen SUNDTGE3	13.8 Unit ID 1
gen_2510	Generator	Gen SUNDTGE4	18.0 Unit ID 1
gen_2511	Generator	Gen TORO 1	38.0 Unit ID SC
gen_2512	Generator	Gen WPCC4CT1	13.8 Unit ID 1
gen_2513	Generator	Gen WPCC5CT1	15.0 Unit ID 1
gen_2514	Generator	Gen WPCC5CT2	15.0 Unit ID 1
gen_2515	Generator	Gen WPCC5ST1	16.5 Unit ID 1
gen_2516	Generator	Gen WPHX CC1	13.8 Unit ID 1
gen_2517	Generator	Gen WPHX CC2	13.8 Unit ID 1
gen_2518	Generator	Gen WPHX CC3	13.8 Unit ID 1
gen_2519	Generator	Gen WPHX GT1	13.8 Unit ID 1
gen_2520	Generator	Gen WPHX GT2	13.8 Unit ID 1

2014 Single Contingency List (Category B)			
Contingency Number	Type	Contingency Name	
gen_2521	Generator	Gen YCACT1	13.8 Unit ID 1
gen_2522	Generator	Gen YCAST1	13.8 Unit ID 1
gen_2523	Generator	Gen YUCCACT1	13.2 Unit ID 1
gen_2524	Generator	Gen YUCCACT2	13.2 Unit ID 1
gen_2525	Generator	Gen YUCCACT3	13.8 Unit ID 1
gen_2526	Generator	Gen YUCCACT4	13.8 Unit ID 1
gen_2527	Generator	Gen YUCCACT5	13.8 Unit ID 1
gen_2528	Generator	Gen YUCCACT6	13.8 Unit ID 1
gen_2529	Generator	Gen YUCCAGEN	13.8 Unit ID 1
gen_2530	Generator	Gen AVSOLAR2_48	0.5 Unit ID 1

APPENDIX B

Power Flow Maps for Security Needs Projects

Javelina - Surprise 69kV Outage without Trilby Wash 230/69kV Substation (2015)

Javelina - Surprise 69kV Outage with Trilby Wash 230/69kV Substation (2015)

Preacher Canyon - Owens - Tonto 69kV Outage without Mazatzal 345/69kV Substation (2017)

Preacher Canyon - Owens 69kV Outage with Mazatzal 345/69kV Substation (2017)

APPENDIX C

2018 Transient Stability Contingency List

Transmission Circuits		
From	To	Voltage
Abel	Pinal Central	500
Arlington	Hassyampa	500
Avery	Scatterwash	230
Avery	Raceway	230
Cedar Mountain	Yavapai	500
Cholla	Four Corners 1	345
Cholla	Four Corners 2	345
Cholla	Mazatzal	345
Cholla	Preacher Canyon	345
Cholla	Saguaro	500
Cholla	Sugarloaf	500
Colorado River	Palo Verde	500
Coronado	Sugarloaf	500
Coronado	Silverking	500
Coronado	Springerville	345
Crystal	Navajo	500
Country Club	Grand Terminal	230
Delany	Sun Valley	500
Dugas	Morgan	500
Dugas	Navajo	500
Four Corners	Moenkopi	500
Four Corners	San Juan	345
Gila River	Jojoba 1	500
Gila River	Jojoba 2	500
Gila River	Jojoba	230
Glen Canyon	Flagstaff 1	345
Glen Canyon	Flagstaff 2	345
Glendale	Grand Terminal	230
Hassyampa	Hoodoo Wash	500
Hassyampa	Jojoba	500
Hassyampa	North Gila	500
Hassyampa	Pinal West	500
Hoodoo Wash	North Gila	500
Jojoba	Kyrene	500
Jojoba	TS4	230

Kyrene	Browning	500
Liberty	Peacock	345
Moenkopi	Cedar Mountain	500
Moenkopi	El Dorado	500
Moenkopi	Yavapai	500
Morgan	Sun Valley	500
Morgan	Pinnacle Peak	500
Morgan	Westwing	500
Navajo	Moenkopi	500
Palm Valley	TS2	230
Palo Verde	Delany	500
Palo Verde	Devers	500
Palo Verde	Hassyampa 1	500
Palo Verde	Hassyampa 2	500
Palo Verde	Hassyampa 3	500
Palo Verde	Rudd	500
Palo Verde	Westwing 1	500
Palo Verde	Westwing 2	500
Pinnacle Peak	Flagstaff 1	345
Pinnacle Peak	Flagstaff 2	345
Pinnacle Peak	Mazatzal	345
Pinnacle Peak	Preacher Canyon	345
Pinnacle Peak	Reach	230
Pinnacle Peak	Lonepeak	230
Pinnacle Peak	Cactus	230
Pinnacle Peak	Ocotillo	230
Pinnacle Peak C	Pinnacle Peak E	230
Pinnacle Peak C	Pinnacle Peak W	230
Pinnacle Peak E	Pinnacle Peak N	230
Pinnacle Peak (SRP)	Pinnacle Peak 1 (APS)	230
Pinnacle Peak (SRP)	Pinnacle Peak 2 (APS)	230
Saguaro	Tortolita 1	500
Saguaro	Tortolita 2	500
Silverking	Browning	500
Sun Valley	Trilby Wash	230
Westwing	Perkins	500
Westwing	Yavapai	500
Westwing	Pinal West	345

Transformers		
Bus	High	Low
Cholla 1	500	345
Cholla 2	500	345
Cholla 1	345	230
Cholla 2	345	230
Four Corners 1	345	230
Four Corners 2	345	230
Four Corners	500	345
Gila River	500	230
Kyrene 6	500	230
Kyrene 7	500	230
Kyrene 8	500	230
Morgan	500	230
Pinnacle Peak 1	500	230
Pinnacle Peak 2	500	230
Pinnacle Peak 3	500	230
Pinnacle Peak 1	345	230
Pinnacle Peak 2	345	230
Pinnacle Peak 3	345	230
Pinnacle Peak 1 (WAPA)	345	230
Pinnacle Peak 2 (WAPA)	345	230
Pinnacle Peak 3 (WAPA)	345	230
Rudd 1	500	230
Rudd 2	500	230
Rudd 3	500	230
Rudd 4	500	230
Sun Valley 1	500	230
Westwing 1	500	230
Westwing 2	500	230
Westwing	500	345
Yavapai 1	500	230
Yavapai 2	500	230

Generators	
Generator	Terminal Bus
Cholla 4	22
Four Corners 5CC	22
Gila River ST1	18
Navajo 2	26
Ocotillo ST2	13.8
Palo Verde 1	24
Redhawk CT2 \& ST1	18
Saguaro CT3	13.8
Sundance G3 \& G4	13.8
West Phoenix North 5CT2	15
West Phoenix South CC1	13.8
Yucca CT3	13.8

Plots provided upon request

APPENDIX D

2021
 Transient Stability Contingency List

Transmission Circuits		
From	To	Voltage
Abel	Pinal Central	500
Arlington	Hassyampa	500
Avery	Scatterwash	230
Avery	Raceway	230
Cedar Mountain	Yavapai	500
Cholla	Four Corners 1	345
Cholla	Four Corners 2	345
Cholla	Mazatzal	345
Cholla	Preacher Canyon	345
Cholla	Saguaro	500
Cholla	Sugarloaf	500
Coronado	Sugarloaf	500
Coronado	Silverking	500
Coronado	Springerville	345
Crystal	Navajo	500
Country Club	Grand Terminal	230
Delany	Sun Valley	500
Devers	Palo Verde	500
Dugas	Morgan	500
Dugas	Navajo	500
Four Corners	Moenkopi	500
Four Corners	San Juan	345
Gila River	Jojoba 1	500
Gila River	Jojoba 2	500
Gila River	Jojoba	230
Glen Canyon	Flagstaff 1	345
Glen Canyon	Flagstaff 2	345
Glendale	Grand Terminal	230
Hassyampa	Hoodoo Wash	500
Hassyampa	Jojoba	500
Hassyampa	North Gila	500
Hassyampa	Palo Verde	500
Hassyampa	Pinal West	500
Hoodoo Wash	North Gila	500
Jojoba	Kyrene	500

Jojoba	TS4/Liberty	230
Kyrene	Browning	500
Liberty	Peacock	345
Mazatzal	Pinnacle Peak	345
Moenkopi	Cedar Mountain	500
Moenkopi	El Dorado	500
Moenkopi	Yavapai	500
Morgan	Sun Valley	500
Morgan	Pinnacle Peak	500
Morgan	Westwing	500
Navajo	Moenkopi	500
Palm Valley	TS2/Trilby Wash	230
Palo Verde	Delany	500
Palo Verde	Devers	500
Palo Verde	Hassyampa 1	500
Palo Verde	Hassyampa 2	500
Palo Verde	Hassyampa 3	500
Palo Verde	Rudd	500
Palo Verde	Westwing 1	500
Palo Verde	Westwing 2	500
Pinnacle Peak	Flagstaff 1	345
Pinnacle Peak	Flagstaff 2	345
Pinnacle Peak	Mazatzal	345
Pinnacle Peak	Preacher Canyon	345
Pinnacle Peak	Reach	230
Pinnacle Peak	Lonepeak	230
Pinnacle Peak	Cactus	230
Pinnacle Peak	Ocotillo	230
Pinnacle Peak C	Pinnacle Peak E	230
Pinnacle Peak C	Pinnacle Peak W	230
Pinnacle Peak E	Pinnacle Peak N	230
Pinnacle Peak (SRP)	Pinnacle Peak 1 (APS)	230
Pinnacle Peak (SRP)	Pinnacle Peak 2 (APS)	230
Saguaro	Tortolita 1	500
Saguaro	Tortolita 2	500
Silverking	Browning	500
Sun Valley	Trilby Wash	230
Westwing	Perkins	500

Westwing	Yavapai	500
Westwing	Pinal West	345

Transformers		
Bus	High	Low
Cholla 1	500	345
Cholla 2	500	345
Cholla 1	345	230
Cholla 2	345	230
Four Corners 1	345	230
Four Corners 2	345	230
Four Corners	500	345
Gila River	500	230
Kyrene 6	500	230
Kyrene 7	500	230
Kyrene 8	500	230
Morgan	500	230
Pinnacle Peak 1	500	230
Pinnacle Peak 2	500	230
Pinnacle Peak 3	500	230
Pinnacle Peak 1	345	230
Pinnacle Peak 2	345	230
Pinnacle Peak 3	345	230
Pinnacle Peak 1 (WAPA)	345	230
Pinnacle Peak 2 (WAPA)	345	230
Pinnacle Peak 3 (WAPA)	345	230
Rudd 1	500	230
Rudd 2	500	230
Rudd 3	500	230
Rudd 4	500	230
Sun Valley 1	500	230
Westwing 1	500	230
Westwing 2	500	230
Westwing	500	345
Yavapai 1	500	230
Yavapai 2	500	230

Generators	
Generator	Terminal Bus
Cholla 4	22
Four Corners 5CC	22
Gila River ST1	18
Navajo 2	26
Ocotillo ST2	13.8
Palo Verde 1	24
Redhawk CT2 \& ST1	18
Saguaro CT3	13.8
Sundance G3 \& G4	13.8
West Phoenix North 5CT2	15
West Phoenix South CC1	13.8
Yucca CT3	13.8

Plots provided upon request

Attachment B

Arizona Public Service Company Renewable Transmission Action Plan January 2014

In the Fifth Biennial Transmission Assessment ("BTA") Decision, (Decision No. 70635, December 11, 2008), the Arizona Corporation Commission ("ACC" or "Commission") ordered Arizona Public Service Company ("APS" or "Company") to file a document identifying their top potential Renewable Transmission Projects ("RTPs") that would support the growth of renewable resources in Arizona. As such, on January 29, 2010, APS filed with the Commission its top potential RTPs, which were identified in collaboration with Southwest Area Transmission planning group ("SWAT") and its subgroups, other utilities and stakeholders. In its filing, APS included a Renewable Transmission Action Plan ("RTAP"), which included the method used to identify RTPs, project approval and financing of the RTPs.

On January 6, 2011, the Commission approved APS's RTAP (Decision No. 72057, January 6, 2011 ${ }^{1}$), which allows APS to pursue the development steps indicated in the APS RTAP. The Decision, in part, ordered:

IT IS FURTHER ORDERED that the timing of the next Renewable Transmission Action Plan filing shall be in parallel with the 2012 Biennial Transmission Assessment process.

IT IS FURTHER ORDERED that Arizona Public Service Company shall, in any future Renewable Transmission Action Plans filed with the Commission, identify Renewable Transmission Projects, which include the acquisition of transmission capacity, such as, but not limited to, (i) new transmission line(s), (ii) upgrade(s) of existing line(s), or (iii) the development of transmission project(s) previously identified by the utility (whether conceptual, planned, committed and/or existing), all of which provide either:

1. Additional direct transmission infrastructure providing access to areas within the state of Arizona that have renewable energy resources, as defined by the Commission's Renewable Energy Standard Rules (A.A.C. R14-2-1801, et seq.), or are likely to have renewable energy resources; or
2. Additional transmission facilities that enable renewable resources to be delivered to load centers.

Renewable expansion in the APS service territory has been trending toward the development of smaller scale renewable projects. APS has received many interconnection requests for these smaller projects, which interconnect directly into the local distribution system (230 kV or below) rather than APS's high voltage transmission system. Development of large scale renewable projects, which drive the need for new RTPs, has reduced dramatically since the time the APS RTAP was filed - as demonstrated by the fact that APS has received only a few transmission system interconnection requests within the last two years.

The APS 2014-2023 Ten-Year Transmission System Plan does not show a need for additional RTPs beyond what the Commission previously approved in Decision No. 72057. As a result, in this RTAP, APS is not proposing new RTPs. As the

[^3]
Arizona Public Service Company Renewable Transmission Action Plan January 2014

development of large renewable energy projects evolves, APS will explore new renewable transmission opportunities.

The RTPs that APS filed in its original RTAP continue to be viable and will be developed as reliability and resource needs arise. The following section describes the RTPs (approved by the Commission in Decision No. 72057), the development approach and schedule for each, the expected cost for each, and the current status of each RTP.

1. Proposed development plan for a potential Delaney to Palo Verde 500kV project

Description: This project is one section of the Palo Verde to Sun Valley 500kV transmission line project that APS will need to import various generation resources to the Phoenix area load center. It is an integral piece to APS's 500 kV infrastructure backbone in the greater Phoenix area. It also is an important component to the potential Devers II transmission project as the project establishes the Delaney switchyard. The Delaney switchyard has been identified as the starting point for the Devers II transmission project, which would provide a connection to the Southern California markets, and has the potential to enable additional renewable energy to be exported from Arizona to California.

Development Approach and Schedule: APS is pursuing the land and Right-ofWay acquisition, engineering, and construction necessary for this project. The project development activities were adjusted to accommodate the pace of renewable energy development in the area. The actual in-service date of this project may be aligned with the first definitive use of the line. This could include an APS Purchased Power Agreement with a developer at Delaney or a committed Transmission Service Agreement with a developer selling to another utility.

Expected Cost: APS estimates the Company's portion of the project to cost approximately $\$ 60$ million.

Current Status: APS acquired a Certificate of Environmental Compatibility ("CEC") for the project (Decision No. 68063, August 17, 2005). APS has almost completed the land and right-of-way acquisition, design, and engineering for the project. The site preparation, grading and foundations at the Delaney switchyard have been completed. Also, APS is proceeding with engineering and construction of the new bay at the Palo Verde switchyard. In previous Ten-Year plans, APS had scheduled the project to be in-service in 2013, which assumed a firm resource development to utilize the project. Without that development, the 201410 Year Plan shows an in-service date of 2016 to coincide with APS's need date for Sun Valley. Currently, APS has one solar generation interconnection request at the Delaney switchyard. The earliest requested interconnection date for this project is 2016.

Arizona Public Service Company Renewable Transmission Action Plan January 2014

2. Proposed development plan for a Palo Verde to North Gila 500kV \# 2 project

Description: The Palo Verde to North Gila transmission project is a potential 500kV transmission line from the Palo Verde hub area to the North Gila Substation, which is located outside of Yuma. This project will help serve the Yuma area as it will increase APS's ability to deliver various resources and increase APS's load serving capability to the load center in Yuma. The area has excellent solar conditions, which should result in comparably good pricing of solar resources. This line could enable APS to bring additional geothermal resources to APS customers from Imperial Valley in California as well as provide an opportunity for Arizona to export renewable energy.

Development Approach and Schedule: APS continues to work toward an inservice date of 2015 for this project. APS initiated the development of this line to increase the load serving capability for, and to deliver resources to, the Yuma load center. At this time APS is the only participant in this project. However, there are discussions taking place between APS and other potential participants.

Estimated Cost: APS estimates the cost of the project will be approximately $\$ 187$ million.

Current Status: APS has acquired a CEC for the project in Commission Decision No. 70127 (January 23, 2008). APS has nearly completed the land and right-of-way acquisition, design, and engineering for the project. Material acquisition and construction activities began in mid-2013, and the line is on track for an expected in-service date of 2015.

3. Proposed development plan for a Palo Verde to Liberty and Gila Bend to Liberty projects

Description: The Palo Verde to Liberty and Gila Bend to Liberty are conceptual 500kV transmission line projects from the Palo Verde hub and from the Gila Bend/Gila River area to a new substation near the existing Liberty substation located in the west valley.

Current Status: The APS 2014 Ten-Year Plan Study does not show a need for these projects and, as a result, no further progress on the development plan has been made. This is primarily due to downturn in the economy and lack of renewable energy development in the area. APS will revisit these projects when renewable energy development increases in the area.

[^0]: ${ }^{1}$ The first three years of these additions are included in the Capital Expenditures table presented in the "Liquidity and Capital Resources" section of APS's 10-K filing, which also includes other transmission costs for new subtransmission projects (69 kV) and transmission upgrades and replacements. The Capital Expenditures table shows \$607M for 2014 thru 2016.

[^1]: ${ }^{2}$ The previous in-service date of 2013 assumed there would be a resource developed at Delaney to utilize the project to effect a 2013 in-service date. Without such development to-date, the project is being listed with an in-service in 2016 with the Delaney-Sun Valley project per approval of the APS Renewable Transmission Action Plan in Decision No. 72057 (1/6/11), Docket No. E-01345A-10-0033.

[^2]: ${ }^{1}$ Load forecasts for the 2014-2023 TYP are based on APS load forecasts as of Q1 2013 that incorporate demand side management and energy efficiency, including distributed generation.

[^3]: ${ }^{1}$ Commission Decision No. 72057 found that APS's 2010 RTAP process and Plan is appropriate and consistent with the Commissions' Fifth Biennial Transmission Assessment final order.

